Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 19(8): 5177-5188, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913832

RESUMO

In this research, cetyltetraethyl ammonium bromide template assisted microwave procedure was utilized to synthesize reduced graphene oxide-zirconia (rGO-ZrO2) nanocomposites by varying the rGO composition (1, 2, 5 and 10 wt%). The physico-chemical characteristics of the nanocomposites were studied using X-ray diffraction (XRD), Raman, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), diffusive reflectance ultraviolet-visible (DRUV-vis), X-ray photoelectron spectroscopy (XPS) and N2-physisorption techniques. The results from XRD, Raman and DSC studies indicate that the increase in rGO concentration resulted in the delay in ZrO2 crystallization temperature and alteration of ZrO2 phase from monoclinic to tetragonal due to an effective incorporation of rGO nanosheets in ZrO2 structure. The rGO loading also have an influence in the morphology of nanocomposites, as sample with 10 wt% rGO possessed unique monolith like morphology with macro pores. All the nanocomposites were utilized as photocatalysts for degradation of crystal violet dye in visible light irradiation. The rGO-ZrO2 nanocomposites showed high reaction rates; the nanocomposite with 5 wt% rGO showed the superior photocatalytic performance as this sample possessed low band gap energy, high surface area, pore volume and presence of surface rGO-ZrO2 interactive species as well as the reactive -OH groups. In addition, the synthesized nanocomposites exhibited excellent recyclability for photocatalytic degradation.

2.
Nanoscale Res Lett ; 13(1): 48, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29427190

RESUMO

TiO2 nanoparticles were synthesized from titanium isopropoxide by a simple peptization method using sulfuric, nitric, and acetic acids. The effect of peptizing acid on physicochemical and photocatalytic properties of TiO2 powders was studied. The structural properties of synthesized TiO2 powders were analyzed by using XRD, TEM, N2-physisorption, Raman, DR UV-vis, FTIR, and X-ray photoelectron spectroscopy techniques. The characterization results showed that acetic acid peptization facilitated the formation of pure anatase phase after thermal treatment at 500 °C; in contrast, nitric acid peptization led to a major rutile phase formation (67%). Interestingly, the sample peptized using sulfuric acid yielded 95% anatase and 5% rutile phases. The photocatalytic activity of synthesized TiO2 nanoparticles was evaluated for degradation of selected organic dyes (crystal violet, methylene blue, and p-nitrophenol) in aqueous solution. The results confirmed that the TiO2 sample peptized using nitric acid (with rutile and anatase phases in 3:1 ratio) offered the highest activity for degradation of organic dyes, although, TiO2 samples peptized using sulfuric acid and acetic acid possessed smaller particle size, higher band gap energy, and high surface area. Interestingly, TiO2 sample peptized with nitric acid possessed relatively high theoretical photocurrent density (0.545 mAcm-2) and pore diameter (150 Å), which are responsible for high electron-hole separation efficiency and diffusion and mass transportation of organic reactants during the photochemical degradation process. The superior activity of TiO2 sample peptized with nitric acid is due to the effective transfer of photogenerated electrons between rutile and anatase phases.

3.
Nanoscale Res Lett ; 10: 73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852369

RESUMO

Nanosized ZrO2 powders with near pure monoclinic, tetragonal, and cubic structures synthesized by various methods were used as catalysts for photocatalytic degradation of methyl orange. The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements. The performance of synthesized ZrO2 nanoparticles in the photocatalytic degradation of methyl orange under UV light irradiation was evaluated. The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions. The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å. The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

4.
Langmuir ; 24(3): 1037-43, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18177061

RESUMO

Nanocomposite materials containing 10% and 20% iron oxide/silica, Fe2O3/SiO2 (w/w), were prepared by direct hydrolysis of aqueous iron III nitrate solution in sols of freshly prepared spherical silica particles (Stöber particles) present in their mother liquors. This was followed by aging, drying, calcination up to 600 degrees C through two different ramp rates, and then isothermal calcinations at 600 degrees C for 3 h. The calcined and the uncalcined (dried at 120 degrees C) composites were characterized by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), N2 adsorption/desorption techniques, and scanning electron microscopy as required. XRD patterns of the calcined composites showed no line broadening at any d-spacing positions of iron oxide phases, thereby reflecting the amorphous nature of Fe2O3 in the composite. The calcined composites showed nitrogen adsorption isotherms characterizing type IV isotherms with high surface area. Moreover, surface area increased with the increasing of the iron oxide ratio and lowering of the calcination ramp rate. Results indicated that iron oxide particles were dispersed on the exterior of silica particles as isolated and/or aggregated nanoparticles. The formation of the title composite was discussed in terms of the hydrolysis and condensation mechanisms of the inorganic FeIII precursor in the silica sols. Thereby, fast nucleation and limited growth of hydrous iron oxide led to the formation of nanoparticles that spread interactively on the hydroxylated surface of spherical silica particles. Therefore, a nanostructured composite of amorphous nanoparticles of iron oxide (as a shell) spreading on the surface of silica particles (as a core) was formed. This morphology limited the aggregation of Fe2O3 nanoparticles, prevented silica particle coalescence at high temperatures, and enhanced thermal stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...