Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(21): 211002, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295095

RESUMO

We report the properties of primary cosmic-ray sulfur (S) in the rigidity range 2.15 GV to 3.0 TV based on 0.38×10^{6} sulfur nuclei collected by the Alpha Magnetic Spectrometer experiment (AMS). We observed that above 90 GV the rigidity dependence of the S flux is identical to the rigidity dependence of Ne-Mg-Si fluxes, which is different from the rigidity dependence of the He-C-O-Fe fluxes. We found that, similar to N, Na, and Al cosmic rays, over the entire rigidity range, the traditional primary cosmic rays S, Ne, Mg, and C all have sizeable secondary components, and the S, Ne, and Mg fluxes are well described by the weighted sum of the primary silicon flux and the secondary fluorine flux, and the C flux is well described by the weighted sum of the primary oxygen flux and the secondary boron flux. The primary and secondary contributions of the traditional primary cosmic-ray fluxes of C, Ne, Mg, and S (even Z elements) are distinctly different from the primary and secondary contributions of the N, Na, and Al (odd Z elements) fluxes. The abundance ratio at the source for S/Si is 0.167±0.006, for Ne/Si is 0.833±0.025, for Mg/Si is 0.994±0.029, and for C/O is 0.836±0.025. These values are determined independent of cosmic-ray propagation.


Assuntos
Carbono , Magnésio , Neônio , Enxofre , Fenômenos Magnéticos
2.
Phys Rev Lett ; 124(21): 211102, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530660

RESUMO

We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8×10^{6} Ne, 2.2×10^{6} Mg, and 1.6×10^{6} Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays.

3.
Phys Rev Lett ; 123(18): 181102, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31763896

RESUMO

Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of ^{3}He and ^{4}He fluxes are presented. The measurements are based on 100 million ^{4}He nuclei in the rigidity range from 2.1 to 21 GV and 18 million ^{3}He from 1.9 to 15 GV collected from May 2011 to November 2017. We observed that the ^{3}He and ^{4}He fluxes exhibit nearly identical variations with time. The relative magnitude of the variations decreases with increasing rigidity. The rigidity dependence of the ^{3}He/^{4}He flux ratio is measured for the first time. Below 4 GV, the ^{3}He/^{4}He flux ratio was found to have a significant long-term time dependence. Above 4 GV, the ^{3}He/^{4}He flux ratio was found to be time independent, and its rigidity dependence is well described by a single power law ∝R^{Δ} with Δ=-0.294±0.004. Unexpectedly, this value is in agreement with the B/O and B/C spectral indices at high energies.

4.
Phys Rev Lett ; 122(10): 101101, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932626

RESUMO

Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.1×10^{6} electrons collected by the Alpha Magnetic Spectrometer on the International Space Station. In the entire energy range the electron and positron spectra have distinctly different magnitudes and energy dependences. The electron flux exhibits a significant excess starting from 42.1_{-5.2}^{+5.4} GeV compared to the lower energy trends, but the nature of this excess is different from the positron flux excess above 25.2±1.8 GeV. Contrary to the positron flux, which has an exponential energy cutoff of 810_{-180}^{+310} GeV, at the 5σ level the electron flux does not have an energy cutoff below 1.9 TeV. In the entire energy range the electron flux is well described by the sum of two power law components. The different behavior of the cosmic-ray electrons and positrons measured by the Alpha Magnetic Spectrometer is clear evidence that most high energy electrons originate from different sources than high energy positrons.

5.
Phys Rev Lett ; 122(4): 041102, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768313

RESUMO

Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million positrons collected by the Alpha Magnetic Spectrometer on the International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties are (a) a significant excess starting from 25.2±1.8 GeV compared to the lower-energy, power-law trend, (b) a sharp dropoff above 284_{-64}^{+91} GeV, (c) in the entire energy range the positron flux is well described by the sum of a term associated with the positrons produced in the collision of cosmic rays, which dominates at low energies, and a new source term of positrons, which dominates at high energies, and (d) a finite energy cutoff of the source term of E_{s}=810_{-180}^{+310} GeV is established with a significance of more than 4σ. These experimental data on cosmic ray positrons show that, at high energies, they predominantly originate either from dark matter annihilation or from other astrophysical sources.

6.
Phys Rev Lett ; 121(5): 051101, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118264

RESUMO

We present the precision measurement from May 2011 to May 2017 (79 Bartels rotations) of the proton fluxes at rigidities from 1 to 60 GV and the helium fluxes from 1.9 to 60 GV based on a total of 1×10^{9} events collected with the Alpha Magnetic Spectrometer aboard the International Space Station. This measurement is in solar cycle 24, which has the solar maximum in April 2014. We observed that, below 40 GV, the proton flux and the helium flux show nearly identical fine structures in both time and relative amplitude. The amplitudes of the flux structures decrease with increasing rigidity and vanish above 40 GV. The amplitudes of the structures are reduced during the time period, which started one year after solar maximum, when the proton and helium fluxes steadily increase. Above ∼3 GV the p/He flux ratio is time independent. We observed that below ∼3 GV the ratio has a long-term decrease coinciding with the period during which the fluxes start to rise.

7.
Phys Rev Lett ; 121(5): 051103, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118280

RESUMO

A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2×10^{6} events is presented. The detailed rigidity dependence of the nitrogen flux spectral index is presented for the first time. The spectral index rapidly hardens at high rigidities and becomes identical to the spectral indices of primary He, C, and O cosmic rays above ∼700 GV. We observed that the nitrogen flux Φ_{N} can be presented as the sum of its primary component Φ_{N}^{P} and secondary component Φ_{N}^{S}, Φ_{N}=Φ_{N}^{P}+Φ_{N}^{S}, and we found Φ_{N} is well described by the weighted sum of the oxygen flux Φ_{O} (primary cosmic rays) and the boron flux Φ_{B} (secondary cosmic rays), with Φ_{N}^{P}=(0.090±0.002)×Φ_{O} and Φ_{N}^{S}=(0.62±0.02)×Φ_{B} over the entire rigidity range. This corresponds to a change of the contribution of the secondary cosmic ray component in the nitrogen flux from 70% at a few GV to <30% above 1 TV.

8.
Phys Rev Lett ; 120(2): 021101, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29376729

RESUMO

We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4×10^{6} nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li/Be flux ratio of 2.0±0.1. The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.

9.
Phys Rev Lett ; 119(25): 251101, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29303302

RESUMO

We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90×10^{6} helium, 8.4×10^{6} carbon, and 7.0×10^{6} oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation. Above 60 GV, these three spectra have identical rigidity dependence. They all deviate from a single power law above 200 GV and harden in an identical way.

10.
Phys Rev Lett ; 117(23): 231102, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982618

RESUMO

Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R^{Δ} with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.

11.
Phys Rev Lett ; 117(9): 091103, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610839

RESUMO

A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependence. Below 60 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios each reaches a maximum. From ∼60 to ∼500 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...