Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14040, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820180

RESUMO

We introduce an experimental method based upon a glass micropipette microinjection technique for generating a multitude of interconnected vesicles (IVs) in the interior of a single giant unilamellar phospholipid vesicle (GUV) serving as a cell model system. The GUV membrane, consisting of a mixture of soybean polar lipid extract and anionic phosphatidylserine, is adhered to a multilamellar lipid vesicle that functions as a lipid reservoir. Continuous IV formation was achieved by bringing a micropipette in direct contact with the outer GUV surface and subjecting it to a localized stream of a Ca2+ solution from the micropipette tip. IVs are rapidly and sequentially generated and inserted into the GUV interior and encapsulate portions of the micropipette fluid content. The IVs remain connected to the GUV membrane and are interlinked by short lipid nanotubes and resemble beads on a string. The vesicle chain-growth from the GUV membrane is maintained for as long as there is the supply of membrane material and Ca2+ solution, and the size of the individual IVs is controlled by the diameter of the micropipette tip. We also demonstrate that the IVs can be co-loaded with high concentrations of neurotransmitter and protein molecules and displaying a steep calcium ion concentration gradient across the membrane. These characteristics are analogous to native secretory vesicles and could, therefore, serve as a model system for studying secretory mechanisms in biological systems.


Assuntos
Modelos Biológicos , Lipossomas Unilamelares/metabolismo , Cálcio/administração & dosagem , Endocitose , Microinjeções , Microscopia de Fluorescência , Nanotubos , Neurotransmissores/metabolismo , Fosfolipídeos/metabolismo
2.
J Vis Exp ; (137)2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30059020

RESUMO

In a wide variety of fundamental cell processes, such as membrane trafficking and apoptosis, cell membrane shape transitions occur concurrently with local variations in calcium ion concentration. The main molecular components involved in these processes have been identified; however, the specific interplay between calcium ion gradients and the lipids within the cell membrane is far less known, mainly due to the complex nature of biological cells and the difficultly of observation schemes. To bridge this gap, a synthetic approach is successfully implemented to reveal the localized effect of calcium ions on cell membrane mimics. Establishing a mimic to resemble the conditions within a cell is a severalfold problem. First, an adequate biomimetic model with appropriate dimensions and membrane composition is required to capture the physical properties of cells. Second, a micromanipulation setup is needed to deliver a small amount of calcium ions to a particular membrane location. Finally, an observation scheme is required to detect and record the response of the lipid membrane to the external stimulation. This article offers a detailed biomimetic approach for studying the calcium ion-membrane interaction, where a lipid vesicle system, consisting of a giant unilamellar vesicle (GUV) connected to a multilamellar vesicle (MLV), is exposed to a localized calcium gradient formed using a microinjection system. The dynamics of the ionic influence on the membrane were observed using fluorescence microscopy and recorded at video frame rates. As a result of the membrane stimulation, highly curved membrane tubular protrusions (MTPs) formed inside the GUV, oriented away from the membrane. The described approach induces the remodeling of the lipid membrane and MTP production in an entirely contactless and controlled manner. This approach introduces a means to address the details of calcium ion-membrane interactions, providing new avenues to study the mechanisms of cell membrane reshaping.


Assuntos
Cálcio/metabolismo , Lipídeos de Membrana/metabolismo , Humanos , Troca Iônica
3.
Small ; 14(21): e1703541, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29665219

RESUMO

Membrane tubular structures are important communication pathways between cells and cellular compartments. Studying these structures in their native environment is challenging, due to the complexity of membranes and varying chemical conditions within and outside of the cells. This work demonstrates that a calcium ion gradient, applied to a synthetic lipid nanotube, triggers lipid flow directed toward the application site, resulting in the formation of a bulge aggregate. This bulge can be translated in a contactless manner by moving a calcium ion source along the lipid nanotube. Furthermore, entrapment of polystyrene nanobeads within the bulge does not tamper the bulge movement and allows transporting of the nanoparticle cargo along the lipid nanotube. In addition to the synthetic lipid nanotubes, the response of cell plasma membrane tethers to local calcium ion stimulation is investigated. The directed membrane transport in these tethers is observed, but with slower kinetics in comparison to the synthetic lipid nanotubes. The findings of this work demonstrate a novel and contactless mode of transport in lipid nanotubes, guided by local exposure to calcium ions. The observed lipid nanotube behavior can advance the current understanding of the cell membrane tubular structures, which are constantly reshaped during dynamic cellular processes.


Assuntos
Biomimética , Cálcio/análise , Nanotubos/química , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Íons , Lipídeos/química , Modelos Teóricos
4.
Langmuir ; 33(41): 11010-11017, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28910109

RESUMO

Experimental and theoretical studies on ion-lipid interactions predict that binding of calcium ions to cell membranes leads to macroscopic mechanical effects and membrane remodeling. Herein, we provide experimental evidence that a point source of Ca2+ acting upon a negatively charged membrane generates spontaneous curvature and triggers the formation of tubular protrusions that point away from the ion source. This behavior is rationalized by strong binding of the divalent cations to the surface of the charged bilayer, which effectively neutralizes the surface charge density of outer leaflet of the bilayer. The mismatch in the surface charge density of the two leaflets leads to nonzero spontaneous curvature. We probe this mismatch through the use of molecular dynamics simulations and validate that calcium ion binding to a lipid membrane is sufficient to generate inward spontaneous curvature, bending the membrane. Additionally, we demonstrate that the formed tubular protrusions can be translated along the vesicle surface in a controlled manner by repositioning the site of localized Ca2+ exposure. The findings demonstrate lipid membrane remodeling in response to local chemical gradients and offer potential insights into the cell membrane behavior under conditions of varying calcium ion concentrations.


Assuntos
Cálcio/química , Cátions Bivalentes , Membrana Celular , Bicamadas Lipídicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...