Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(5): 2316-2323, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30746942

RESUMO

Coarse temporal (i.e., annual) and spatial (i.e., watershed) scales camouflage water stress associated with withdrawals from surface water and groundwater sources. To address this "curse of scale", we developed a framework to characterize water stress at different time scales and at fine spatial scales that have not been explored before. Our framework incorporates surface water-groundwater interactions by accounting for spatially cumulative consumptive and nonconsumptive use impacts and associated changes in flow due to depletion and return flow along stream networks. We apply the framework using a rich data set of water withdrawals from more than 6800 principal facilities (i.e., withdrawal capacity >380 000 L/day) across the U.S. Great Lakes Basin. Results underscore the importance of spatiotemporal scale and return flows when characterizing water stress. Although the majority of catchments in this water-rich region do not experience large stress, a number of small headwater catchments with sensitive streams are vulnerable to flow depletion caused by surface water and shallow groundwater withdrawals, especially in a high-withdrawal, low-flow month (e.g., August). The return flow from deep groundwater withdrawals compensates for the streamflow depletion to the extent that excess flow is likely in many catchments. The improved ability to pinpoint the imbalance between natural water supply and withdrawals based on stream-specific ecological water stress thresholds facilitates protecting fragile aquatic ecosystems in vulnerable catchments.


Assuntos
Água Subterrânea , Água , Desidratação , Ecossistema , Humanos , Rios
2.
Biol Chem ; 394(10): 1253-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770532

RESUMO

Extracellular vesicles (EVs), including microvesicles and exosomes, are nano- to micron-sized vesicles, which may deliver bioactive cargos that include lipids, growth factors and their receptors, proteases, signaling molecules, as well as mRNA and non-coding RNA, released from the cell of origin, to target cells. EVs are released by all cell types and likely induced by mechanisms involved in oncogenic transformation, environmental stimulation, cellular activation, oxidative stress, or death. Ongoing studies investigate the molecular mechanisms and mediators of EVs-based intercellular communication at physiological and oncogenic conditions with the hope of using this information as a possible source for explaining physiological processes in addition to using them as therapeutic targets and disease biomarkers in a variety of diseases. A major limitation in this evolving discipline is the hardship and the lack of standardization for already challenging techniques to isolate EVs. Technical advances have been accomplished in the field of isolation with improving knowledge and emerging novel technologies, including ultracentrifugation, microfluidics, magnetic beads and filtration-based isolation methods. In this review, we will discuss the latest advances in methods of isolation methods and production of clinical grade EVs as well as their advantages and disadvantages, and the justification for their support and the challenges that they encounter.


Assuntos
Biologia/métodos , Exossomos/química , Biologia Celular/tendências , Centrifugação com Gradiente de Concentração , Microfluídica , Microscopia Eletrônica de Transmissão
3.
Front Physiol ; 3: 354, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973237

RESUMO

Extracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize ECVs. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some ECVs-specific evidence. Characterization of ECVs has also recently seen many advances with the use of Nanoparticle Tracking Analysis, flow cytometry, cryo-electron microscopy instruments, and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

4.
Front Physiol ; 3: 162, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22661955

RESUMO

Microvesicles are nano-sized lipid vesicles released by all cells in vivo and in vitro. They are released physiologically under normal conditions but their rate of release is higher under pathological conditions such as tumors. Once released they end up in the systemic circulation and have been found and characterized in all biofluids such as plasma, serum, cerebrospinal fluid, breast milk, ascites, and urine. Microvesicles represent the status of the donor cell they are released from and they are currently under intense investigation as a potential source for disease biomarkers. Currently, the "gold standard" for isolating microvesicles is ultracentrifugation, although alternative techniques such as affinity purification have been explored. Viscosity is the resistance of a fluid to a deforming force by either shear or tensile stress. The different chemical and molecular compositions of biofluids have an effect on its viscosity and this could affect movements of the particles inside the fluid. In this manuscript we addressed the issue of whether viscosity has an effect on sedimentation efficiency of microvesicles using ultracentrifugation. We used different biofluids and spiked them with polystyrene beads and assessed their recovery using the Nanoparticle Tracking Analysis. We demonstrate that MVs recovery inversely correlates with viscosity and as a result, sample dilutions should be considered prior to ultracentrifugation when processing any biofluids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...