Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 59(12): 3405-11, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22955870

RESUMO

Tetrapolar bioimpedance measurements on subjects have long been suspected of being affected by stray capacitance between the subjects' body and ground. This paper provides a circuit model to analyze that effect in the frequency range from 100 Hz to 1 MHz in order to identify the relevant parameters when impedance is measured by applying a voltage and measuring both the resulting current and the potential difference between two points on the surface of the volume conductor. The proposed model includes the impedance of each electrode and the input impedance of the differential voltage amplifier. When common values for the circuit parameters are assumed, the simplified model predicts: 1) a frequency-independent gain (scale factor) error; 2) inductive artifacts, that is, the measured impedance increases with increasing frequency and may include positive angle phases; and 3) resonance that can affect well below 1 MHz. In addition to the stray capacitance to ground, relevant parameters that determine those errors are the capacitance of the "low-current" electrode and the input capacitance of the differential voltage amplifier. Experimental results confirm those theoretical predictions and show effects from several additional resonances above 1 MHz that also depend on body capacitance to ground.


Assuntos
Capacitância Elétrica , Impedância Elétrica , Modelos Biológicos , Eletrodos , Humanos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...