Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1249955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38414710

RESUMO

Dickeya fangzhongdai, an aggressive plant pathogen, causes symptoms on a variety of crops and ornamental plants including bleeding canker of Asian pear trees. Historical findings stress the need for a specific detection tool for D. fangzhongdai to prevent overlooking the pathogen or assigning it to general Dickeya spp. Therefore, a qualitative real-time PCR for specific detection of D. fangzhongdai has been developed and validated. The developed assay shows selectivity of 100%, diagnostic sensitivity of 76% and limit of detection with 95% confidence interval in plant matrices ranging from 311 to 2,275 cells/mL of plant extracts. The assay was successfully used in a retrospective survey of selected host plants of relevance to Europe and environmental niches relevant to D. fangzhongdai. Samples of potato tubers and plants, plants from the Malinae subtribe (apple, pear, quince, and Asian pear tree) and fresh surface water from Slovenia were analyzed. D. fangzhongdai was not detected in any plant samples, however, 12% of surface water samples were found to be positive.

2.
Plant Dis ; 106(11): 2927-2939, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35380469

RESUMO

Grapevine yellows is one of the most damaging phytoplasma-associated diseases worldwide. It is linked to several phytoplasma species, which can vary regionally due to phytoplasma and insect-vector diversity. Specific, rapid, and reliable detection of the grapevine yellows pathogen has an important role in phytoplasma control. The purpose of this study was to develop and validate a specific loop-mediated isothermal amplification (LAMP) assay for detection of a distinct strain of grapevine 'Candidatus Phytoplasma asteris' that is present in South Africa, through implementation of a genome-informed test design approach. Several freely available, user-friendly, web-based tools were coupled to design the specific LAMP assays. The criteria for selection of the assays were set for each step of the process, which resulted in four experimentally operative LAMP assays that targeted the ftsH/hflB gene region, specific to the aster yellows phytoplasma strain from South Africa. A real-time PCR was developed, targeting the same genetic region, to provide extensive validation of the LAMP assay. The validated molecular assays are highly specific to the targeted aster yellows phytoplasma strain from South Africa, with good sensitivity and reproducibility. We show a genome-informed molecular test design and an efficient validation approach for molecular tests if reference and sample materials are sparse and hard to obtain.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Phytoplasma , Phytoplasma/genética , África do Sul , Reprodutibilidade dos Testes , Doenças das Plantas
3.
Methods Mol Biol ; 2354: 401-413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34448172

RESUMO

The Ralstonia solanacearum species complex (RSSC) is composed of several Ralstonia species and strains that are little related and show varied host range and distinct geographic distributions. The RSSC causes wilt disease, and can thus have severe economic consequences for many important crops and ornamental plants. One such is potato (Solanum tuberosum), where infection causes brown rot of the tubers. It is important that symptomatic tubers and plants can be rapidly and easily tested, as exclusion of infected material is a cornerstone of management of bacterial diseases. A suitable method is loop-mediated isothermal amplification, a rapid, DNA-based method that can be used for specific detection of plant pathogens in infected materials. The combination of this loop-mediated isothermal amplification assay for the RSSC with a simple sample preparation method is fit for purpose for identification of this devastating disease in symptomatic tubers and plants. This methodology is rapid and cost efficient, and can be carried out outside of conventional laboratory facilities.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Ralstonia solanacearum/genética
4.
BMC Genomics ; 20(1): 34, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634913

RESUMO

BACKGROUND: The Dickeya genus is part of the Pectobacteriaceae family that is included in the newly described enterobacterales order. It comprises a group of aggressive soft rot pathogens with wide geographic distribution and host range. Among them, the new Dickeya fangzhongdai species groups causative agents of maceration-associated diseases that impact a wide variety of crops and ornamentals. It affects mainly monocot plants, but D. fangzhongdai strains have also been isolated from pear trees and water sources. Here, we analysed which genetic novelty exists in this new species, what are the D. fangzhongdai-specific traits and what is the intra-specific diversity. RESULTS: The genomes of eight D. fangzhongdai strains isolated from diverse environments were compared to 31 genomes of strains belonging to other Dickeya species. The D. fangzhongdai core genome regroups approximately 3500 common genes, including most genes that encode virulence factors and regulators characterised in the D. dadantii 3937 model strain. Only 38 genes are present in D. fangzhongdai and absent in all other Dickeyas. One of them encodes a pectate lyase of the PL10 family of polysaccharide lyases that is found only in a few bacteria from the plant environment, soil or human gut. Other D. fangzhongdai-specific genes with a known or predicted function are involved in regulation or metabolism. The intra-species diversity analysis revealed that seven of the studied D. fangzhongdai strains were grouped into two distinct clades. Each clade possesses a pool of 100-150 genes that are shared by the clade members, but absent from the other D. fangzhongdai strains and several of these genes are clustered into genomic regions. At the strain level, diversity resides mainly in the arsenal of T5SS- and T6SS-related toxin-antitoxin systems and in secondary metabolite biogenesis pathways. CONCLUSION: This study identified the genome-specific traits of the new D. fangzhongdai species and highlighted the intra-species diversity of this species. This diversity encompasses secondary metabolites biosynthetic pathways and toxins or the repertoire of genes of extrachromosomal origin. We however didn't find any relationship between gene content and phenotypic differences or sharing of environmental habitats.


Assuntos
Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Doenças das Plantas/microbiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/patogenicidade , Genoma Bacteriano , Polissacarídeo-Liases/genética , Metabolismo Secundário/genética , Fatores de Virulência/genética
5.
Front Microbiol ; 8: 1870, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033917

RESUMO

Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya-infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales, belonging to three different families, Podoviridae, Myoviridae, and Siphoviridae. The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral and alkaline pH. Furthermore, the stability of the tested bacteriophage was also connected to the incubation medium and bacteriophage concentration at certain pH values. Finally, the emergence of bacteriophage-resistant bacterial colonies is highly connected to the concentration of bacteriophages in the bacterial environment. This is the first report on bacteriophages against Dickeya from the Podoviridae family to expand on potential bacteriophages to include in bacteriophage cocktails as biocontrol agents. Some of these bacteriophage isolates also showed activity against Dickeya solani, an aggressive strain that causes the soft rot of potatoes, which indicates their broad potential as biocontrol agents.

6.
Genome Announc ; 3(5)2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26358590

RESUMO

The genus Dickeya contains bacteria causing soft rot of economically important crops and ornamental plants. Here, we report the draft genome sequences of two Dickeya sp. isolates from rotted leaves of Phalaenopsis orchids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...