Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 40(6): 879-888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734486

RESUMO

OBJECTIVES: Part 1 of this study investigates the influence of zirconia types, chimney heights, and gingival heights on the strength of the zirconia-abutment-interface. Part 2 extends the analysis to include adhesive brands and macro-retentions. METHODS: In Part 1, the study utilized three zirconia types (700 MPa, 1000 MPa, 1200 MPa) to fabricate 234 screw-retained zirconia crowns with varying chimney heights (3.5 mm, 4.1 mm, 5 mm) and gingival heights (0.65 mm, 1.2 mm, 3 mm) of the titanium abutments. All adherend surfaces underwent sandblasting with aluminum oxide before cementation with a specific resin cement. In Part 2, the investigation of 240 screw-retained zirconia crowns focused on a single zirconia type (1000 MPa) with chimney heights of 3.5 mm and 5 mm and a gingival height of 0.65 mm of the titanium abutments, cemented with three different resin cements. All adherent surfaces underwent sandblasting with aluminum oxide before cementation, whereas 120 out of 240 abutments received additional macro retentions. Storage in water at 37 °C for 24 h preceded the tensile test. RESULTS: The study revealed a substantial impact of chimney height and zirconia type on the bond strength of the zirconia-abutment-interface. Neither adhesive brands nor macro retentions significantly impacted the bond strength. Fracture incidence was significantly influenced by gingival height and zirconia type in part 1, whereas in part 2 smaller chimney heights correlated with a higher fracture incidence. SIGNIFICANCE: This study contributes insights into the complex interplay of factors influencing the zirconia-abutment-interface. The results provide a foundation for refining clinical approaches, emphasizing the importance of chimney height and zirconia type in achieving successful anterior gap implant restorations.


Assuntos
Coroas , Dente Suporte , Teste de Materiais , Cimentos de Resina , Propriedades de Superfície , Titânio , Zircônio , Zircônio/química , Titânio/química , Cimentos de Resina/química , Análise do Estresse Dentário , Cimentos Dentários/química , Óxido de Alumínio/química , Cimentação , Materiais Dentários/química , Resistência à Tração
2.
J Clin Med ; 11(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36431352

RESUMO

BACKGROUND: During total knee arthroplasty (TKA), one of the key alignment factors to pay attention to is the posterior tibial slope (PTS). The PTS clearly influences the kinematics of the knee joint but must be adapted to the coupling degree of the specific TKA design. So far, there is hardly any literature including clear recommendations for how surgeons should choose the PTS in a medial stabilized (MS) TKA. The aim of the present study is to investigate the effects of different degrees of PTS on femorotibial kinematics in MS TKA. MATERIALS AND METHODS: An MS TKA was performed in seven fresh-frozen human specimens successively with 0°, 3°, and 6° of PTS. After each modification, weight-bearing deep knee flexion (30-130°) was performed, and femorotibial kinematics were analyzed. RESULTS: A lateral femoral rollback was observed for all three PTS modifications. With an increasing PTS, the tibia was shifted more anteriorly on the lateral side (0° PTS anterior tibial translation -9.09 (±9.19) mm, 3° PTS anterior tibial translation -11.03 (±6.72) mm, 6° PTS anterior tibial translation 11.86 (±9.35) mm). No difference in the tibial rotation was found for the different PTS variants. All PTS variants resulted in internal rotation of the tibia during flexion. With a 3° PTS, the design-specific medial rotation point was achieved more accurately. CONCLUSIONS: According to our findings, we recommend a PTS of 3° when implanting the MS prosthesis used in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...