Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253481

RESUMO

In response to the COVID-19 pandemic, widespread non-pharmaceutical interventions (NPIs), including physical distancing, mask wearing, and enhanced hygiene, have been implemented. As of March 2021, three effective vaccines have been approved for emergency use in the United States, with several other vaccines in the pipeline. We use a transmission model to study when and how NPIs could be relaxed in the United States with relative safety as vaccination becomes more widespread. We compare different relaxation scenarios where NPIs begin to relax 0-9 months after vaccination begins for both a one dose and two dose strategy, with historical levels of social interactions being reached within 1 month to 1 year. In our model, vaccination can allow widespread relaxation of NPIs to begin safely within 2 to 9 months, greatly reducing deaths and peak health system burden compared to relaxing NPIs without vaccination. Vaccinated individuals can safely begin to relax NPIs sooner than unvaccinated individuals. The extent of delay needed to safely reopen depends primarily on the rate of vaccine rollout, with the degree of protection against asymptomatic infection playing a secondary role. If a vaccination rate of 3 million doses/day can be achieved, similar to the typical rollout speed of seasonal influenza vaccination, NPIs could begin to be safely relaxed in 2-3 months. With a vaccination rate of 1 million doses/day, a 6-9-month delay is needed. A one dose strategy is preferred if relative efficacy is similar to a two-dose series, but the relative benefit of this strategy is minimal when vaccine rollout is fast. Due to the urgent need to pursue strategies that enable safe relaxation of NPIs, we recommend a two-dose strategy with an initial delay of at least 3 months in relaxing restrictions further, and that the speed of vaccine rollout be given immediate priority.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20170456

RESUMO

Significant progress has already been made in development and testing of SARS-CoV-2 vaccines, and Phase III clinical trials have begun for 6 novel vaccine candidates to date. These Phase III trials seek to demonstrate direct benefits of a vaccine on vaccine recipients. However, vaccination is also known to bring about indirect benefits to a population through the reduction of virus circulation. The indirect effects of SARS-CoV-2 vaccination can play a key role in reducing case counts and COVID-19 deaths. To illustrate this point, we show through simulation that a vaccine with strong indirect effects has the potential to reduce SARS-CoV-2 circulation and COVID-19 deaths to a greater extent than an alternative vaccine with stronger direct effects but weaker indirect effects. Protection via indirect effects may be of particular importance in the context of this virus, because elderly individuals are at an elevated risk of death but are also less likely to be directly protected by vaccination due to immune senescence. We therefore encourage ongoing data collection and model development aimed at evaluating the indirect effects of forthcoming SARS-CoV-2 vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...