Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 581(7807): 152-158, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405005

RESUMO

Bound three-body quantum systems are important for fundamental physics1,2 because they enable tests of quantum electrodynamics theory and provide access to the fundamental constants of atomic physics and to nuclear properties. Molecular hydrogen ions, the simplest molecules, are representative of this class3. The metastability of the vibration-rotation levels in their ground electronic states offers the potential for extremely high spectroscopic resolution. Consequently, these systems provide independent access to the Rydberg constant (R∞), the ratios of the electron mass to the proton mass (me/mp) and of the electron mass to the deuteron mass (me/md), the proton and deuteron nuclear radii, and high-level tests of quantum electrodynamics4. Conventional spectroscopy techniques for molecular ions5-14 have long been unable to provide precision competitive with that of ab initio theory, which has greatly improved in recent years15. Here we improve our rotational spectroscopy technique for a sympathetically cooled cluster of molecular ions stored in a linear radiofrequency trap16 by nearly two orders in accuracy. We measured a set of hyperfine components of the fundamental rotational transition. An evaluation resulted in the most accurate test of a quantum-three-body prediction so far, at the level of 5 × 10-11, limited by the current uncertainties of the fundamental constants. We determined the value of the fundamental constants combinations [Formula: see text] and mp/me with a fractional uncertainty of 2 × 10-11, in agreement with, but more precise than, current Committee on Data for Science and Technology values. These results also provide strong evidence of the correctness of previous key high-precision measurements and a more than 20-fold stronger bound for a hypothetical fifth force between a proton and a deuteron.

2.
Opt Lett ; 38(22): 4903-6, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322162

RESUMO

We have demonstrated a compact, robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multicavity block is employed, and, for each laser, the sideband locking technique is applied. A small lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation are the useful features of the system. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral-atom lattice clock. The device significantly supports and improves the clock's operation. The laser with the most stringent requirements imposed by this application is stabilized to a line width of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.


Assuntos
Artefatos , Lasers , Análise Espectral/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...