Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Evol ; 176: 103312, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36745959

RESUMO

In the early 1890s at Trinil, Eugène Dubois found a hominin skullcap (Trinil 2) and femur (Trinil 3, Femur I), situated at the same level ca. 10-15 m apart. He interpreted them as representing one species, Pithecanthropus erectus (now Homo erectus) which he inferred to be a transitional form between apes and humans. Ever since, this interpretation has been questioned-as the skullcap looked archaic and the femur surprisingly modern. From the 1950s onward, chemical and morphological analyses rekindled the debate. Concurrently, (bio)stratigraphic arguments gained importance, raising the stakes by extrapolating the consequences of potential mixing of hominin remains to the homogeneity of the complete Trinil fossil assemblage. However, conclusive evidence on the provenance and age of the hominin fossils remains absent. New Trinil fieldwork yielded unmanned aerial vehicle imagery, digital elevation models, and stratigraphic observations that have been integrated here with an analysis of the historical excavation documentation. Using a geographic information system and sightline analysis, the position of the historical excavation pits and the hominin fossils therein were reconstructed, and the historical stratigraphy was connected to that of new sections and test pits. This study documents five strata situated at low water level at the excavation site. Cutting into a lahar breccia are two similarly oriented, but asynchronous pre-terrace fluvial channels whose highly fossiliferous infills are identified as the primary targets of the historical excavations (Bone-Bearing Channel 1, 830-773 ka; Bone-Bearing Channel 2, 560-380 ka), providing evidence for a mixed faunal assemblage and yielding most of the hominin fossils. These channels were incised by younger terrace-related fluvial channels (terminal Middle or Late Pleistocene) that directly intersect the historical excavations and the reconstructed discovery location of Femur I, thereby providing an explanation for the relatively modern morphology of this 'bone of contention'. The paleoanthropological implications are discussed in light of the current framework of human evolution in Southeast Asia.


Assuntos
Hominidae , Animais , Humanos , Hominidae/anatomia & histologia , Fósseis , Indonésia , Sudeste Asiático , Crânio/anatomia & histologia
2.
Mol Biol Evol ; 38(4): 1292-1305, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33230523

RESUMO

In studies of hominin adaptations to fire use, the role of the aryl hydrocarbon receptor (AHR) in the evolution of detoxification has been highlighted, including statements that the modern human AHR confers a significantly better capacity to deal with toxic smoke components than the Neanderthal AHR. To evaluate this, we compared the AHR-controlled induction of cytochrome P4501A1 (CYP1A1) mRNA in HeLa human cervix epithelial adenocarcinoma cells transfected with an Altai-Neanderthal or a modern human reference AHR expression construct, and exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We compared the complete AHR mRNA sequences including the untranslated regions (UTRs), maintaining the original codon usage. We observe no significant difference in CYP1A1 induction by TCDD between Neanderthal and modern human AHR, whereas a 150-1,000 times difference was previously reported in a study of the AHR coding region optimized for mammalian codon usage and expressed in rat cells. Our study exemplifies that expression in a homologous cellular background is of major importance to determine (ancient) protein activity. The Neanderthal and modern human dose-response curves almost coincide, except for a slightly higher extrapolated maximum for the Neanderthal AHR, possibly caused by a 5'-UTR G-variant known from modern humans (rs7796976). Our results are strongly at odds with a major role of the modern human AHR in the evolution of hominin detoxification of smoke components and consistent with our previous study based on 18 relevant genes in addition to AHR, which concluded that efficient detoxification alleles are more dominant in ancient hominins, chimpanzees, and gorillas than in modern humans.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Poluentes Ambientais/metabolismo , Evolução Molecular , Homem de Neandertal/genética , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Animais , Células HeLa , Células Hep G2 , Humanos , Inativação Metabólica/genética , Homem de Neandertal/metabolismo , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/metabolismo
3.
PLoS One ; 11(9): e0161102, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27655273

RESUMO

Studies of the defence capacity of ancient hominins against toxic substances may contribute importantly to the reconstruction of their niche, including their diets and use of fire. Fire usage implies frequent exposure to hazardous compounds from smoke and heated food, known to affect general health and fertility, probably resulting in genetic selection for improved detoxification. To investigate whether such genetic selection occurred, we investigated the alleles in Neanderthals, Denisovans and modern humans at gene polymorphisms well-known to be relevant from modern human epidemiological studies of habitual tobacco smoke exposure and mechanistic evidence. We compared these with the alleles in chimpanzees and gorillas. Neanderthal and Denisovan hominins predominantly possess gene variants conferring increased resistance to these toxic compounds. Surprisingly, we observed the same in chimpanzees and gorillas, implying that less efficient variants are derived and mainly evolved in modern humans. Less efficient variants are observable from the first early Upper Palaeolithic hunter-gatherers onwards. While not clarifying the deep history of fire use, our results highlight the long-term stability of the genes under consideration despite major changes in the hominin dietary niche. Specifically for detoxification gene variants characterised as deleterious by epidemiological studies, our results confirm the predominantly recent appearance reported for deleterious human gene variants, suggesting substantial impact of recent human population history, including pre-Holocene expansions.

4.
Nanoscale ; 5(11): 4870-83, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23619571

RESUMO

Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying nine different cellular endpoints, was performed with a broad series of monodisperse, well characterized silicon (Si) and germanium (Ge) NPs with various surface functionalizations. Human colonic adenocarcinoma Caco-2 and rat alveolar macrophage NR8383 cells were used to clarify the toxicity of this series of NPs. The surface coatings on the NPs appeared to dominate the cytotoxicity: the cationic NPs exhibited cytotoxicity, whereas the carboxylic acid-terminated and hydrophilic PEG- or dextran-terminated NPs did not. Within the cationic Si NPs, smaller Si NPs were more toxic than bigger ones. Manganese-doped (1% Mn) Si NPs did not show any added toxicity, which favors their further development for bioimaging. Iron-doped (1% Fe) Si NPs showed some added toxicity, which may be due to the leaching of Fe(3+) ions from the core. A silica coating seemed to impart toxicity, in line with the reported toxicity of silica. Intracellular mitochondria seem to be the target for the toxic NPs since a dose-, surface charge- and size-dependent imbalance of the mitochondrial membrane potential was observed. Such an imbalance led to a series of other cellular events for cationic NPs, like decreased mitochondrial membrane potential (ΔΨm) and ATP production, induction of ROS generation, increased cytoplasmic Ca(2+) content, production of TNF-α and enhanced caspase-3 activity. Taken together, the results explain the toxicity of Si NPs/Ge NPs largely by their surface characteristics, provide insight into the mode of action underlying the observed cytotoxicity, and give directions on synthesizing biocompatible Si and Ge NPs, as this is crucial for bioimaging and other applications in for example the field of medicine.


Assuntos
Germânio/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , Trifosfato de Adenosina/metabolismo , Animais , Células CACO-2 , Cálcio/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Dextranos/química , Humanos , Manganês/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Polietilenoglicóis/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo
5.
Nanotoxicology ; 7(1): 71-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22087472

RESUMO

A series of monodisperse (45 ± 5 nm) fluorescent nanoparticles from tri-block copolymers (polymeric nanoparticles (PNPs)) bearing different surface charges were synthesised and investigated for cytotoxicity in NR8383 and Caco-2 cells. The positive PNPs were more cytotoxic and induced a higher intracellular reactive oxygen species production than the neutral and negative ones. The cytotoxicity of positive PNPs with quaternary ammonium groups decreased with increasing steric bulk. The intracellular uptake and cellular interactions of these different PNPs were also tested in NR8383 cells by confocal laser scanning microscopy, which revealed higher uptake for positive than for negative PNPs. Also positive PNPs were found to interact much more with cell membranes, whereas the negative PNPs were internalised mainly by lysosomal endocytosis. Uptake of positive PNPs decreased with increasing steric bulk around the positive charge. A surface charge-specific interaction of clathrin for positive PNPs and caveolin receptors for negative PNPs was observed. These findings confirm that surface charge is important for the cytotoxicity of these PNPs, while they additionally point to considerable additional effects of the steric shielding around positive charges on PNP cytotoxicity.


Assuntos
Nanopartículas , Polímeros/metabolismo , Linhagem Celular , Endocitose , Corantes Fluorescentes , Humanos , Microscopia Eletrônica de Varredura , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
6.
Mutagenesis ; 27(6): 653-63, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22844077

RESUMO

Estragole is a naturally occurring food-borne genotoxic compound found in a variety of food sources, including spices and herbs. This results in human exposure to estragole via the regular diet. The objective of this study was to quantify the dose-dependent estragole-DNA adduct formation in rat liver and the urinary excretion of 1'-hydroxyestragole glucuronide in order to validate our recently developed physiologically based biodynamic (PBBD) model. Groups of male outbred Sprague Dawley rats (n = 10, per group) were administered estragole once by oral gavage at dose levels of 0 (vehicle control), 5, 30, 75, 150, and 300mg estragole/kg bw and sacrificed after 48h. Liver, kidney and lungs were analysed for DNA adducts by LC-MS/MS. Results obtained revealed a dose-dependent increase in DNA adduct formation in the liver. In lungs and kidneys DNA adducts were detected at lower levels than in the liver confirming the occurrence of DNA adducts preferably in the target organ, the liver. The results obtained showed that the PBBD model predictions for both urinary excretion of 1'-hydroxyestragole glucuronide and the guanosine adduct formation in the liver were comparable within less than an order of magnitude to the values actually observed in vivo. The PBBD model was refined using liver zonation to investigate whether its predictive potential could be further improved. The results obtained provide the first data set available on estragole-DNA adduct formation in rats and confirm their occurrence in metabolically active tissues, i.e. liver, lung and kidney, while the significantly higher levels found in liver are in accordance with the liver as the target organ for carcinogenicity. This opens the way towards future modelling of dose-dependent estragole liver DNA adduct formation in human.


Assuntos
Anisóis/toxicidade , Adutos de DNA/efeitos dos fármacos , Modelos Biológicos , Administração Oral , Derivados de Alilbenzenos , Animais , Anisóis/urina , Cromatografia Líquida , Relação Dose-Resposta a Droga , Glucuronídeos/urina , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
7.
Part Fibre Toxicol ; 9: 11, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22546147

RESUMO

BACKGROUND: Polymer nanoparticles (PNP) are becoming increasingly important in nanomedicine and food-based applications. Size and surface characteristics are often considered to be important factors in the cellular interactions of these PNP, although systematic investigations on the role of surface properties on cellular interactions and toxicity of PNP are scarce. RESULTS: Fluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm) and surface charges (positive and negative) were synthesized, characterized and studied for uptake and cytotoxicity in NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP45 (45 nm) showed a higher cytotoxicity compared to the positive bigger PNP(90) (90 nm) particles including reduction in mitochondrial membrane potential (ΔΨ(m)), induction of reactive oxygen species (ROS) production, ATP depletion and TNF-α release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential (ΔΨ(m)), uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning microscopy (CLSM). Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP), caveolin (for negative PNP) and mannose receptors (for hydroxylated PNP) were found with smaller PNP45 showing stronger interactions with the receptors than bigger PNP(90). CONCLUSIONS: The size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different surface charges) play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors (clathrin, caveolin and mannose) leading to cellular internalization were observed to depend on size and surface properties of the different PNP. These properties of the nanoparticles also dominate their cytotoxicity, which was analyzed for many factors. The effective reduction in the mitochondrial membrane potential (ΔΨ(m)), uncoupling of the electron transfer chain in mitochondria and resulting ATP depletion, induction of ROS and oxidative stress likely all play a role in the mechanisms behind the cytotoxicity of these PNP.


Assuntos
Enterócitos/efeitos dos fármacos , Nanopartículas/toxicidade , Polímeros/toxicidade , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/patologia , Fluorescência , Humanos , Macrófagos , Macrófagos Alveolares , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Fagocitose/efeitos dos fármacos , Polímeros/química , Polímeros/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
8.
Toxicol Sci ; 126(1): 173-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22262566

RESUMO

The specific properties of nanoscale particles, large surface-to-mass ratios and highly reactive surfaces, have increased their commercial application in many fields. However, the same properties are also important for the interaction and bioaccumulation of the nonbiodegradable nanoscale particles in a biological system and are a cause for concern. Hematite (α-Fe2O3), being a mineral form of Fe(III) oxide, is one of the most used iron oxides besides magnetite. The aim of our study was the characterization and comparison of biophysical reactivity and toxicological effects of α-Fe2O3 nano- (d < 100 nm) and microscale (d < 5 µm) particles in human lung cells. Our study demonstrates that the surface reactivity of nanoscale α-Fe2O3 differs from that of microscale particles with respect to the state of agglomeration, radical formation potential, and cellular toxicity. The presence of proteins in culture medium and agglomeration were found to affect the catalytic properties of the hematite nano- and microscale particles. Both the nano- and microscale α-Fe2O3 particles were actively taken up by human lung cells in vitro, although they were not found in the nuclei and mitochondria. Significant genotoxic effects were only found at very high particle concentrations (> 50 µg/ml). The nanoscale particles were slightly more potent in causing cyto- and genotoxicity as compared with their microscale counterparts. Both types of particles induced intracellular generation of reactive oxygen species. This study underlines that α-Fe2O3 nanoscale particles trigger different toxicological reaction pathways than microscale particles. However, the immediate environment of the particles (biomolecules, physiological properties of medium) modulates their toxicity on the basis of agglomeration rather than their actual size.


Assuntos
Brônquios/efeitos dos fármacos , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Brônquios/metabolismo , Brônquios/ultraestrutura , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Ensaio Cometa , Dano ao DNA , Espectroscopia de Ressonância de Spin Eletrônica , Endocitose , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Compostos Férricos/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Propriedades de Superfície
9.
Part Fibre Toxicol ; 7: 25, 2010 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-20831820

RESUMO

BACKGROUND: Surface charge and oxidative stress are often hypothesized to be important factors in cytotoxicity of nanoparticles. However, the role of these factors is not well understood. Hence, the aim of this study was to systematically investigate the role of surface charge, oxidative stress and possible involvement of mitochondria in the production of intracellular reactive oxygen species (ROS) upon exposure of rat macrophage NR8383 cells to silicon nanoparticles. For this aim highly monodisperse (size 1.6 ± 0.2 nm) and well-characterized Si core nanoparticles (Si NP) were used with a surface charge that depends on the specific covalently bound organic monolayers: positively charged Si NP-NH2, neutral Si NP-N3 and negatively charged Si NP-COOH. RESULTS: Positively charged Si NP-NH2 proved to be more cytotoxic in terms of reducing mitochondrial metabolic activity and effects on phagocytosis than neutral Si NP-N3, while negatively charged Si NP-COOH showed very little or no cytotoxicity. Si NP-NH2 produced the highest level of intracellular ROS, followed by Si NP-N3 and Si NP-COOH; the latter did not induce any intracellular ROS production. A similar trend in ROS production was observed in incubations with an isolated mitochondrial fraction from rat liver tissue in the presence of Si NP. Finally, vitamin E and vitamin C induced protection against the cytotoxicity of the Si NP-NH2 and Si NP-N3, corroborating the role of oxidative stress in the mechanism underlying the cytotoxicity of these Si NP. CONCLUSION: Surface charge of Si-core nanoparticles plays an important role in determining their cytotoxicity. Production of intracellular ROS, with probable involvement of mitochondria, is an important mechanism for this cytotoxicity.


Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Silício/toxicidade , Animais , Antioxidantes/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fagocitose/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
10.
Food Chem Toxicol ; 47(2): 316-20, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19049816

RESUMO

The chemopreventive effects of high fat microalgal oil diet on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) were studied in male Fischer 344 rats following 8 weeks of dietary treatment. These effects were compared to the effects of high fat fish oil and high fat corn oil diets to determine whether microalgal oil is a good alternative for fish oil regarding protection against colorectal cancer. Despite the difference in fatty acid composition and total amount of n-3 polyunsaturated fatty acids (PUFAs) between microalgal oil and fish oil, both these oils gave the same 50% reduction of AOM-induced ACF when compared to corn oil. To determine whether oxidative stress could play a role in the chemoprevention of colorectal cancer by n-3 PUFAs, feces and caecal content were examined using the TBA assay. The results showed that lipid peroxidation does occur in the gastrointestinal tract. As several lipid peroxidation products of n-3 PUFAs can induce phase II detoxifying enzymes by an EpRE-mediated pathway, the in vivo results suggest that this route may contribute to n-3 PUFA-mediated chemoprevention. All in all, n-3 PUFA-rich oil from microalgae is as good as fish oil regarding chemoprevention in the colon of the rat.


Assuntos
Neoplasias do Colo/prevenção & controle , Gorduras na Dieta/administração & dosagem , Eucariotos/química , Óleos de Peixe/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Óleos de Plantas/administração & dosagem , Lesões Pré-Cancerosas/prevenção & controle , Ração Animal , Animais , Azoximetano/toxicidade , Carcinógenos/toxicidade , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Óleo de Milho/administração & dosagem , Modelos Animais de Doenças , Ácidos Graxos Ômega-3 , Mucosa Intestinal/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/metabolismo , Ratos , Ratos Endogâmicos F344
11.
Food Chem Toxicol ; 46(11): 3422-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18783729

RESUMO

This study investigates whether the previous observation that quercetin increases the transport of PhIP through Caco-2 monolayers in vitro could be confirmed in an in vivo rat model. Co-administration of 1.45 micromol PhIP/kg bw and 30 micromol quercetin/kg bw significantly increased the blood AUC(0-8h) of PhIP in rats to 131+/-14% of the AUC(0-8h) for rats dosed with PhIP alone. Significantly increased blood PhIP levels were detected at 15, 30, 45 and 180 min. At 4 and 8h post-dosing a difference in the PhIP levels in the blood between the two treatment groups was no longer observed. In vitro and in silico modeling of PhIP transport using Caco-2 cells and a previously described kinetic model for PhIP transport revealed that the relative increase in PhIP transport caused by quercetin is dependent on the concentration of the two compounds. When substituting the PhIP and quercetin concentrations used in the in vivo experiment in the kinetic model, an effect of quercetin on PhIP transport was predicted that matches the actual effect of 131% observed in vivo. It is concluded that quercetin increases the bioavailability of the pro-carcinogen PhIP in rats pointing at a potential adverse effect of this supposed beneficial food ingredient.


Assuntos
Antioxidantes/farmacologia , Carcinógenos/farmacocinética , Imidazóis/farmacocinética , Quercetina/farmacologia , Animais , Área Sob a Curva , Disponibilidade Biológica , Transporte Biológico Ativo/efeitos dos fármacos , Células CACO-2/metabolismo , Humanos , Masculino , Modelos Biológicos , Distribuição Aleatória , Ratos , Ratos Wistar
12.
Proteomics ; 8(1): 45-61, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18095365

RESUMO

Quercetin has been shown to act as an anticarcinogen in experimental colorectal cancer (CRC). The aim of the present study was to characterize transcriptome and proteome changes occurring in the distal colon mucosa of rats supplemented with 10 g quercetin/kg diet for 11 wk. Transcriptome data analyzed with Gene Set Enrichment Analysis showed that quercetin significantly downregulated the potentially oncogenic mitogen-activated protein kinase (Mapk) pathway. In addition, quercetin enhanced expression of tumor suppressor genes, including Pten, Tp53, and Msh2, and of cell cycle inhibitors, including Mutyh. Furthermore, dietary quercetin enhanced genes involved in phase I and II metabolism, including Fmo5, Ephx1, Ephx2, and Gpx2. Quercetin increased PPARalpha target genes, and concomitantly enhanced expression of genes involved in mitochondrial fatty acid (FA) degradation. Proteomics performed in the same samples revealed 33 affected proteins, of which four glycolysis enzymes and three heat shock proteins were decreased. A proteome-transcriptome comparison showed a low correlation, but both pointed out toward altered energy metabolism. In conclusion, transcriptomics combined with proteomics showed that dietary quercetin evoked changes contrary to those found in colorectal carcinogenesis. These tumor-protective mechanisms were associated with a shift in energy production pathways, pointing at decreased cytoplasmic glycolysis and toward increased mitochondrial FA degradation.


Assuntos
Neoplasias Colorretais/prevenção & controle , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Glicólise/fisiologia , Mucosa Intestinal/metabolismo , Mitocôndrias/metabolismo , Proteoma/metabolismo , Quercetina/administração & dosagem , Animais , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Dieta , Regulação para Baixo/fisiologia , Mucosa Intestinal/química , Masculino , Mitocôndrias/química , Ratos , Ratos Endogâmicos F344
13.
Food Chem Toxicol ; 45(5): 716-24, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17141934

RESUMO

Polyunsaturated fatty acid (PUFA) rich micro-algal oil was tested in vitro and compared with fish oil for antiproliferative properties on cancer cells in vitro. Oils derived from Crypthecodinium cohnii, Schizochytrium sp. and Nitzschia laevis, three commercial algal oil capsules, and menhaden fish oil were used in cell viability and proliferation tests with human colon adenocarcinoma Caco-2 cells. With these tests no difference was found between algal oil and fish oil. The nonhydrolysed algal oils and fish oil showed a much lower toxic effect on cell viability, and cell proliferation in Caco-2 cells than the hydrolysed oils and the free fatty acids (FFAs). Eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) were used as samples for comparison with the tested hydrolysed and nonhydrolysed oils. The hydrolysed samples showed comparative toxicity as the free fatty acids and no difference between algal and fish oil. Oxidative stress was shown to play a role in the antiproliferative properties of EPA and DHA, as alpha-tocopherol could partially reverse the EPA/DHA-induced effects. The results of the present study support a similar mode of action of algal oil and fish oil on cancer cells in vitro, in spite of their different PUFA content.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eucariotos , Ácidos Graxos Insaturados/farmacologia , Óleos de Peixe/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Células CACO-2 , Divisão Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Eucariotos/química , Ácidos Graxos Insaturados/química , Óleos de Peixe/química , Humanos , Hidrólise , alfa-Tocoferol/farmacologia
14.
J Nutr ; 136(11): 2862-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17056814

RESUMO

The effect of the flavonoid quercetin and its conjugate rutin was investigated on (biomarkers of) colorectal cancer (CRC). Male F344 rats (n = 42/group) were fed 0, 0.1, 1, or 10 g quercetin/kg diet or 40 g rutin/kg diet. Two wk after initial administration of experimental diets, rats were given 2 weekly subcutaneous injections with 15 mg/kg body wt azoxymethane (AOM). At wk 38 post-AOM, quercetin dose dependently (P < 0.05) decreased the tumor incidence, multiplicity, and size, whereas tumor incidences were comparable in control (50%) and rutin (45%) groups. The number of aberrant crypt foci (ACF) in unsectioned colons at wk 8 did not correlate with the tumor incidence at wk 38. Moreover, at wk 8 post-AOM, the number and multiplicity of ACF with or without accumulation of beta-catenin were not affected by the 10 g quercetin/kg diet. In contrast, another class of CRC-biomarkers, beta-catenin accumulated crypts, contained less beta-catenin than in controls (P < 0.05). After enzymatic deconjugation, the plasma concentration of 3'-O-methyl-quercetin and quercetin at wk 8 was inversely correlated with the tumor incidence at wk 38 (r = -0.95, P

Assuntos
Neoplasias Colorretais/prevenção & controle , Quercetina/uso terapêutico , Rutina/uso terapêutico , Animais , Azoximetano/toxicidade , Peso Corporal , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/induzido quimicamente , Suplementos Nutricionais , Masculino , Lesões Pré-Cancerosas/prevenção & controle , Quercetina/sangue , Ratos , Ratos Endogâmicos F344 , beta Catenina/metabolismo
15.
Toxicol Appl Pharmacol ; 217(2): 204-15, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16997339

RESUMO

The present study describes the effect of different flavonoids on the absorption of the pro-carcinogen PhIP through Caco-2 monolayers and the development of an in silico model describing this process taking into account passive diffusion and active transport of PhIP. Various flavonoids stimulated the apical to basolateral PhIP transport. Using the in silico model for flavone, kaempferol and chrysoeriol, the apparent Ki value for inhibition of the active transport to the apical side was estimated to be below 53 muM and for morin, robinetin and taxifolin between 164 and 268 microM. For myricetin, luteolin, naringenin and quercetin, the apparent Ki values were determined more accurately and amounted to 37.3, 12.2, 11.7 and 5.6 microM respectively. Additional experiments revealed that the apical to basolateral PhIP transport was also increased in the presence of a typical BCRP or MRP inhibitor with apparent Ki values in the same range as those of the flavonoids. This observation together with the fact that flavonoids are known to be inhibitors of MRPs and BCRP, corroborates that inhibition of these apical membrane transporters is involved in the flavonoid-mediated increased apical to basolateral PhIP transport. Based on the apparent Ki values obtained, it is concluded that the flavonols, at the levels present in the regular Western diet, are capable of stimulating the transport of PhIP through Caco-2 monolayers from the apical to the basolateral compartment. This points to flavonoid-mediated stimulation of the bioavailability of PhIP and, thus, a possible adverse effect of these supposed beneficial food ingredients.


Assuntos
Carcinógenos/metabolismo , Flavonoides/farmacologia , Imidazóis/metabolismo , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Difusão , Relação Dose-Resposta a Droga , Flavanonas/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Propionatos/farmacologia , Quinolinas/farmacologia , Reprodutibilidade dos Testes , Tetra-Hidroisoquinolinas/farmacologia
16.
Chem Res Toxicol ; 19(8): 977-81, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16918235

RESUMO

Toxicology historically has been directed at studying the mechanisms of adverse effects of isolated compounds on living organisms at high levels of exposure, forming the basis for risk and safety assessment. One way to refocus and mobilize new research funds would be to better match the priorities in regulatory issues and direct the research within the field of toxicology more to low-dose toxicology and risk--benefit analysis. Low-dose toxicology can only be developed when taking into account mechanistic insight and will require risk-benefit analysis and a definition of interactions between compounds at realistic doses of exposure, especially in the case of dietary constituents. This is because the biological effects at low levels of exposure not only may be adverse but also can be beneficial depending on the target organ, the actual end point studied, the receptors activated, and/or the gene expression, protein, and metabolite patterns affected. Toxicologists have the tools and knowledge to study mechanisms of biological effects of chemicals on living organisms, and they should redirect their focus from looking only at adverse effects at high levels of exposure to characterizing the complex biological effects, both adverse and beneficial, at low levels of exposure. This may even result in the notion that beneficial effects can be the result of reaction pathways that are generally considered adverse and vice versa. Low-dose toxicology not only will provide a significant research challenge for the years ahead but also should contribute to better methods for low-dose risk assessment for complex mixtures of chemical compounds. This refocusing from high- to low-dose effects turns the field from a science focusing on adverse effects into a science studying the biological effects of chemical compounds on living organisms, taking into account the realization that the ultimate biological effect of a chemical may vary with its dose, the end point or target organ considered, and/or the combined exposure with other chemicals. By defining the effects of chemicals on living organisms at physiologically relevant exposure levels, toxicologists may contribute not only to better risk and safety assessment but also to preventive medicine, generating knowledge on possible adverse and also beneficial effects of chemicals. In addition, it will result in an approach for food safety assessment more in line with that for drug safety assessment taking the risk-benefit balance into consideration.


Assuntos
Relação Dose-Resposta a Droga , Toxicologia/métodos , Toxicologia/tendências , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Modelos Biológicos , Neoplasias/induzido quimicamente , Preparações Farmacêuticas/administração & dosagem , Medição de Risco
17.
Biotechnol Bioeng ; 95(3): 370-83, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16894630

RESUMO

The aim of the present study is to demonstrate the use of controlled bioreactors for toxicological studies. As a model system the effect of linoleic acid on hybridoma cells is studied in two well-controlled continuously operated bioreactors placed in series. In the first reactor the effect on rapid proliferating cells can be studied, while in the second reactor a special steady state is created, which allows studying the effect on apoptotic cells. Experiments are done at 0, 25, and 50 microM linoleic acid. At the end of the experiment with 50 microM linoleic acid, the concentration of linoleic acid is increased stepwise to determine the cytotoxic level. For rapid proliferating cells exposed to 25 and 50 microM stimulation of growth was observed. At 50 microM there was at the same time an increase in cell death through apoptosis. For stressed apoptotic cells linoleic acid caused partial growth inhibition at 25 and 50 microM and arrest of cell proliferation in the G(2)/M phase at 50 microM. For both, rapid proliferating cells and stressed apoptotic cells, complete growth inhibition occurred at 85 microM, with cells being arrested in the G(2)/M phase and dying mainly through necrosis. Cells in the bioreactor system appeared to be more sensitive towards linoleic acid than cells grown in multi-well plates. (IC(50) = 300 microM; IC(100) = 400 microM). Altogether the results of the present study reveal that the biostat experiments allow detailed analysis of the effect of a bioactive ingredient on cell physiology and behavior.


Assuntos
Apoptose/efeitos dos fármacos , Reatores Biológicos , Sobrevivência Celular/efeitos dos fármacos , Hibridomas/efeitos dos fármacos , Ácido Linoleico/toxicidade , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Concentração Inibidora 50 , Testes de Toxicidade/métodos
18.
FEBS Lett ; 580(19): 4587-90, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16889775

RESUMO

In this study the n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid appear to be effective inducers of electrophile-responsive element (EpRE) regulated genes, whereas the n-6 PUFA arachidonic acid is not. These n-3 PUFAs need to be oxidized to induce EpRE-regulated gene expression, as the antioxidant vitamin E can partially inhibit the PUFA induced dose-dependent effect. Results were obtained using a reporter gene assay, real-time RT-PCR and enzyme activity assays. The induction of EpRE-regulated phase II genes by n-3 PUFAs may be a major pathway by which n-3 PUFAs, in contrast to n-6 PUFAs, are chemopreventive and anticarcinogenic.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Linhagem Celular , Glutationa Transferase/metabolismo , Camundongos , NAD(P)H Desidrogenase (Quinona) , NADPH Desidrogenase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Chem Biol Interact ; 160(3): 193-203, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16516181

RESUMO

This study investigates the pro-oxidant activity of 3'- and 4'-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3'- and 4'-O-methylquercetin with horseradish peroxidase in the presence of glutathione yielded two major metabolites for each compound, identified as the 6- and 8-glutathionyl conjugates of 3'- and 4'-O-methylquercetin. Thus, catechol-O-methylation of quercetin does not eliminate its pro-oxidant chemistry. Furthermore, the formation of these A-ring glutathione conjugates of 3'- and 4'-O-methylquercetin indicates that quercetin o-quinone may not be an intermediate in the formation of covalent quercetin adducts with glutathione, protein and/or DNA. In additional studies, it was demonstrated that covalent DNA adduct formation by a mixture of [4-(14)C]-3'- and 4'-O-methylquercetin in HepG2 cells amounted to only 42% of the level of covalent adducts formed by a similar amount of [4-(14)C]-quercetin. Altogether, these results reveal the effect of methylation of the catechol moiety of quercetin on its pro-oxidant behavior. Methylation of quercetin does not eliminate but considerably attenuates the cellular implications of the pro-oxidant activity of quercetin, which might add to the mechanisms underlying the apparent lack of in vivo carcinogenicity of this genotoxic compound. The paper also presents a new mechanism for the pro-oxidant chemistry of quercetin, eliminating the requirement for formation of an o-quinone, and explaining why methylation of the catechol moiety does not fully abolish formation of reactive DNA binding metabolites.


Assuntos
Adutos de DNA/metabolismo , Glutationa/metabolismo , Quercetina/metabolismo , Quinonas/metabolismo , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Metilação , Oxirredução , Quinonas/química , Ratos , Relação Estrutura-Atividade
20.
Chem Res Toxicol ; 19(1): 111-6, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16411663

RESUMO

In vitro studies were performed to elucidate the human cytochrome P450 enzymes involved in the bioactivation of methyleugenol to its proximate carcinogen 1'-hydroxymethyleugenol. Incubations with Supersomes, expressing individual P450 enzymes to a high level, revealed that P450 1A2, 2A6, 2C9, 2C19, and 2D6 are intrinsically able to 1'-hydroxylate methyleugenol. An additional experiment with Gentest microsomes, expressing the same individual enzymes to roughly average liver levels, indicated that P450 1A2, 2C9, 2C19, and 2D6 contribute to methyleugenol 1'-hydroxylation in the human liver. A study, in which correlations between methyleugenol 1'-hydroxylation in human liver microsomes from 15 individuals and the conversion of enzyme specific substrates by the same microsomes were investigated, showed that P450 1A2 and P450 2C9 are important enzymes in the bioactivation of methyleugenol. This was confirmed in an inhibition study in which pooled human liver microsomes were incubated with methyleugenol in the presence and absence of enzyme specific inhibitors. Kinetic studies revealed that at physiologically relevant concentrations of methyleugenol P450 1A2 is the most important enzyme for bioactivation of methyleugenol in the human liver showing an enzyme efficiency (kcat/Km) that is approximately 30, 50, and > 50 times higher than the enzyme efficiencies of, respectively, P450 2C9, 2C19, and 2D6. Only when relatively higher methyleugenol concentrations are present P450 2C9 and P450 2C19 might contribute as well to the bioactivation of methyleugenol in the human liver. A 5-fold difference in activities was found between the 15 human liver microsomes of the correlation study (range, 0.89-4.30 nmol min(-1) nmol P450(-1)). Therefore, interindividual differences might cause variation in sensitivity toward methyleugenol. Especially lifestyle factors such as smoking (induces P450 1A) and the use of barbiturates (induces P450 2C) can increase the susceptibility for adverse effects of methyleugenol.


Assuntos
Carcinógenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Eugenol/análogos & derivados , Aromatizantes/metabolismo , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/metabolismo , Benzoflavonas/farmacologia , Biotransformação , Linhagem Celular , Citocromo P-450 CYP1A2/metabolismo , Inibidores do Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Inibidores Enzimáticos/farmacologia , Eugenol/metabolismo , Humanos , Técnicas In Vitro , Cinética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Oxigenases de Função Mista , Proteínas Recombinantes/metabolismo , Medição de Risco , Sulfafenazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...