Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20497, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993550

RESUMO

Dendritic spines are considered a morphological proxy for excitatory synapses, rendering them a target of many different lines of research. Over recent years, it has become possible to simultaneously image large numbers of dendritic spines in 3D volumes of neural tissue. In contrast, currently no automated method for 3D spine detection exists that comes close to the detection performance reached by human experts. However, exploiting such datasets requires new tools for the fully automated detection and analysis of large numbers of spines. Here, we developed an efficient analysis pipeline to detect large numbers of dendritic spines in volumetric fluorescence imaging data acquired by two-photon imaging in vivo. The core of our pipeline is a deep convolutional neural network that was pretrained on a general-purpose image library and then optimized on the spine detection task. This transfer learning approach is data efficient while achieving a high detection precision. To train and validate the model we generated a labeled dataset using five human expert annotators to account for the variability in human spine detection. The pipeline enables fully automated dendritic spine detection reaching a performance slightly below that of the human experts. Our method for spine detection is fast, accurate and robust, and thus well suited for large-scale datasets with thousands of spines. The code is easily applicable to new datasets, achieving high detection performance, even without any retraining or adjustment of model parameters.


Assuntos
Espinhas Dendríticas , Tecido Nervoso , Humanos , Redes Neurais de Computação , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos
2.
Animals (Basel) ; 13(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627350

RESUMO

Bats are widely distributed around the world, have adapted to many different environments and are highly sensitive to changes in their habitat, which makes them essential bioindicators of environmental changes. Passive acoustic monitoring over long durations, like months or years, accumulates large amounts of data, turning the manual identification process into a time-consuming task for human experts. Automated acoustic monitoring of bat activity is therefore an effective and necessary approach for bat conservation, especially in wind energy applications, where flying animals like bats and birds have high fatality rates. In this work, we provide a neural-network-based approach for bat echolocation pulse detection with subsequent genus classification and species classification under real-world conditions, including various types of noise. Our supervised model is supported by an unsupervised learning pipeline that uses autoencoders to compress linear spectrograms into latent feature vectors that are fed into a UMAP clustering algorithm. This pipeline offers additional insights into the data properties, aiding in model interpretation. We compare data collected from two locations over two consecutive years sampled at four heights (10 m, 35 m, 65 m and 95 m). With sufficient data for each labeled bat class, our model is able to comprehend the full echolocation soundscape of a species or genus while still being computationally efficient and simple by design. Measured classification F1 scores in a previously unknown test set range from 92.3% to 99.7% for species and from 94.6% to 99.4% for genera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...