Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2487: 297-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35687243

RESUMO

The utility of ATP-dependent multi-enzymatic reactions is limited by their requirement for stoichiometric amounts of this expensive cofactor or additional purified enzymes for its recycling. Here we describe a simple method for the production of recombinant cell-free extracts (or lysates) of E. coli that support ATP-dependent biotransformations. The inexpensive preparation described is obtained with modest processing from a single recombinant bacterial culture of E. coli. In addition to recombinantly overexpressed enzymes that catalyze the primary ATP-dependent reactions of interest, endogenous kinases that are naturally present in the extract catalyze recycling of the requisite ATP. This means that only catalytic amounts of cofactor are necessary to drive the biotransformation, and without the requirement for additional purified enzymes. This approach has been applied successfully to an array of in vitro enzymatic cascades with multiple ATP-dependent steps.


Assuntos
Trifosfato de Adenosina , Escherichia coli , Trifosfato de Adenosina/metabolismo , Biocatálise , Catálise , Escherichia coli/metabolismo
2.
Chemistry ; 27(69): 17487-17494, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34651362

RESUMO

Aliphatic γ-chloro-α-amino acids incorporated in place of their canonical analogues through cell-free protein synthesis act as heat-labile linkers, offering a useful strategy for the straightforward production of target peptides as fusion proteins, from which the targets are readily released. Until now, the natural abundance of aliphatic amino acids in peptides has limited the scope of the method, as it leads to undesired cleavage sites in synthesized products, but here the authors report the development of a new cleavable chloro amino acid that incorporates in place of the relatively rare amino acid methionine, thus greatly expanding the scope of producible targets. This new strategy is employed for simplified peptide synthesis with a methionine-free fusion partner, allowing single-site incorporation of the cleavable linker for clean release and easy purification of the target peptide. Its utility is demonstrated through the straightforward preparation of two peptides reported to be challenging targets and not accessible through standard solid-phase chemical methodologies, as well as analogues.


Assuntos
Metionina , Peptídeos , Aminoácidos/metabolismo , Biossíntese Peptídica , Peptídeos/metabolismo , Biossíntese de Proteínas
3.
Biophys Rev ; 12(1): 175-182, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31960346

RESUMO

In recent years, cell-free extracts (or lysates) have (re-)emerged as a third route to the traditional options of isolated or whole-cell biocatalysts. Advances in molecular biology and genetic engineering enable facile production of recombinant cell-free extracts, where endogenous enzymes are enriched with heterologous activities. These inexpensive preparations may be used to catalyse multistep enzymatic reactions without the constraints of cell toxicity and the cell membrane or the cost and complexity associated with production of isolated biocatalysts. Herein, we present an overview of the key advancements in cell-free synthetic biology that have led to the emergence of cell-free extracts as a promising biocatalysis platform.

4.
Sci Rep ; 9(1): 15621, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666578

RESUMO

Nucleic acid amplification (NAA) is a cornerstone of modern molecular and synthetic biology. Routine application by non-specialists, however, is hampered by difficulties with storing and handling the requisite labile and expensive reagents, such as deoxynucleoside triphosphates (dNTPs) and polymerases, and the complexity of protocols for their use. Here, a recombinant E. coli extract is reported that provides all the enzymes to support high-fidelity DNA amplification, and with labile dNTPs generated in situ from cheap and stable deoxynucleosides. Importantly, this is obtained from a single, engineered cell strain, through minimal processing, as a lysate capable of replacing the cold-stored commercial reagents in a typical PCR. This inexpensive preparation is highly active, as 1 L of bacterial culture is enough to supply ~106 NAA reactions. Lyophilized lysate can be used after a single-step reconstitution, resulting overall in a greatly simplified workflow and a promising synthetic biology tool, in particular for applications such as diagnostics.


Assuntos
DNA/genética , Escherichia coli/citologia , Escherichia coli/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Nucleotídeos/biossíntese , DNA Recombinante/genética
5.
N Biotechnol ; 49: 104-111, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30347258

RESUMO

Nucleoside triphosphates (NTPs) are important synthetic targets with diverse applications in therapeutics and diagnostics. Enzymatic routes to NTPs from simple building blocks are attractive, however the cost and complexity of assembling the requisite mixtures of multiple enzymes hinders application. Here, we describe the use of an engineered E. coli cell-free lysate as an efficient readily-prepared multi-enzyme biocatalyst for the production of uridine triphosphate (UTP) from free ribose and nucleobase. Endogenous lysate enzymes are able to support the nucleobase ribosylation and nucleotide phosphorylation steps, while uridine phosphorylation and the production of ribose phosphates (ribose 1-phosphate, ribose 5-phosphate and phosphoribosyl pyrophosphate) require recombinant enrichment of endogenous activities. Co-expression vectors encoding all required recombinant enzymes were employed for host cell transformation, such that a cell-free lysate with all necessary activities was obtained from a single bacterial culture. ATP required as phosphorylation cofactor was recycled by endogenous lysate enzymes using cheap, readily-prepared acetyl phosphate. Surprisingly, acetyl phosphate initiated spontaneous generation of ATP in the lysate, most likely from the breakdown of endogenous pools of adenosine-containing starting materials (e.g. adenosine cofactors, ribonucleic acids). The sub-stoichiometric amount of ATP produced and recycled in this way was enough to support all ATP-dependent steps without addition of any exogenous cofactor or auxiliary enzyme. Using this approach, equimolar solutions of orotic acid and ribose are transformed near quantitatively into 1.4 g L-1 UTP within 2.5 h, using a low-cost, readily-generated biocatalytic preparation.


Assuntos
Trifosfato de Adenosina/farmacologia , Recombinação Genética , Ribose/metabolismo , Uracila/metabolismo , Uridina Trifosfato/biossíntese , Catálise , Escherichia coli/metabolismo , Hidrólise , Ácido Orótico/metabolismo , Recombinação Genética/genética , Ribose/química , Uracila/química , Uridina Trifosfato/química
6.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150502

RESUMO

Carbamate kinases catalyze the conversion of carbamate to carbamoyl phosphate, which is readily transformed into other compounds. Carbamate forms spontaneously from ammonia and carbon dioxide in aqueous solutions, so the kinases have potential for sequestrative utilization of the latter compounds. Here, we compare seven carbamate kinases from mesophilic, thermophilic, and hyperthermophilic sources. In addition to the known enzymes from Enterococcus faecalis and Pyrococcus furiosus, the previously unreported enzymes from the hyperthermophiles Thermococcus sibiricus and Thermococcus barophilus, the thermophiles Fervidobacterium nodosum and Thermosipho melanesiensis, and the mesophile Clostridium tetani were all expressed recombinantly, each in high yield. Only the clostridial enzyme did not show catalysis. In direct assays of carbamate kinase activity, the three hyperthermophilic enzymes display higher specific activities at elevated temperatures, greater stability, and remarkable substrate turnover at alkaline pH (9.9 to 11.4). Thermococcus barophilus and Thermococcus sibiricus carbamate kinases were found to be the most active when the enzymes were tested at 80°C, and maintained activity over broad temperature and pH ranges. These robust thermococcal enzymes therefore represent ideal candidates for biotechnological applications involving aqueous ammonia solutions, since nonbuffered 0.0001 to 1.0 M solutions have pH values of approximately 9.8 to 11.8. As proof of concept, here we also show that carbamoyl phosphate produced by the Thermococcus barophilus kinase is efficiently converted in situ to carbamoyl aspartate by aspartate transcarbamoylase from the same source organism. Using acetyl phosphate to simultaneously recycle the kinase cofactor ATP, at pH 9.9 carbamoyl aspartate is produced in high yield and directly from solutions of ammonia, carbon dioxide, and aspartate.IMPORTANCE Much of the nitrogen in animal wastes and used in fertilizers is commonly lost as ammonia in water runoff, from which it must be removed to prevent downstream pollution and evolution of nitrogenous greenhouse gases. Since carbamate kinases transform ammonia and carbon dioxide to carbamoyl phosphate via carbamate, and carbamoyl phosphate may be converted into other valuable compounds, the kinases provide a route for useful sequestration of ammonia, as well as of carbon dioxide, another greenhouse gas. At the same time, recycling the ammonia in chemical synthesis reduces the need for its energy-intensive production. However, robust catalysts are required for such biotransformations. Here we show that carbamate kinases from hyperthermophilic archaea display remarkable stability and high catalytic activity across broad ranges of pH and temperature, making them promising candidates for biotechnological applications. We also show that carbamoyl phosphate produced by the kinases may be efficiently used to produce carbamoyl aspartate.


Assuntos
Álcalis/metabolismo , Anabolizantes/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Temperatura , Amônia/metabolismo , Carbamatos/metabolismo , Carbamoil-Fosfato/metabolismo , Catálise , Clostridium tetani/enzimologia , Clostridium tetani/genética , Clostridium tetani/metabolismo , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Conformação Proteica , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Thermococcus/enzimologia , Thermococcus/genética , Thermococcus/metabolismo
7.
ACS Chem Biol ; 11(12): 3289-3293, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27978706

RESUMO

E. coli lysate efficiently catalyzes acetyl phosphate-driven ATP regeneration in several important biotechnological applications. The utility of this ATP recycling strategy in enzyme-catalyzed chemical synthesis is illustrated through the conversion of uridine to UMP by the lysate from recombinant overexpression of uridine kinase with the E. coli. The UMP is further transformed into UTP through sequential phosphorylations by kinases naturally present in the lysate, in high yield. Cytidine and 5-fluorouridine also give the corresponding NMPs and NTPs with this system. Cell-free protein expression with a processed extract of lysate also proceeds readily when, instead of adding the required NTPs, all four are produced in situ from the NMPs, using acetyl phosphate and relying on endogenous kinase activity. Similarly, dNMPs can be used to produce the dNTPs necessary for DNA synthesis in PCR. These cheap alternative protocols showcase the potential of acetyl phosphate and ATP recycling with readily available cell lysate.


Assuntos
Trifosfato de Adenosina/metabolismo , Sistema Livre de Células/metabolismo , Escherichia coli/metabolismo , Microbiologia Industrial , Organofosfatos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Microbiologia Industrial/métodos , Reação em Cadeia da Polimerase , Regulação para Cima , Uridina/metabolismo , Uridina Quinase/genética , Uridina Quinase/metabolismo , Uridina Trifosfato/metabolismo
8.
Beilstein J Org Chem ; 11: 2370-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734087

RESUMO

Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.

9.
Bioresour Technol ; 164: 7-11, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814397

RESUMO

The biological conversion of CO2 and H2 into formate offers a sustainable route to a valuable commodity chemical through CO2 fixation, and a chemical form of hydrogen fuel storage. Here we report the first example of CO2 hydrogenation utilising engineered whole-cell biocatalysts. Escherichia coli JM109(DE3) cells transformed for overexpression of either native formate dehydrogenase (FDH), the FDH from Clostridium carboxidivorans, or genes from Pyrococcus furiosus and Methanobacterium thermoformicicum predicted to express FDH based on their similarity to known FDH genes were all able to produce levels of formate well above the background, when presented with H2 and CO2, the latter in the form of bicarbonate. In the case of the FDH from P. furiosus the yield was highest, reaching more than 1 g L(-1)h(-1) when a hydrogen-sparging reactor design was used.


Assuntos
Biocatálise , Dióxido de Carbono/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Formiatos/metabolismo , Recombinação Genética , Eletroforese em Gel de Poliacrilamida , Hidrogênio/metabolismo , Hidrogenação , Pyrococcus/enzimologia , Recombinação Genética/genética
10.
Bioengineered ; 4(5): 348-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23841981

RESUMO

The generation of formate from CO2 provides a method for sequestration of this greenhouse gas as well as the production of a valuable commodity chemical and stabilized form of hydrogen fuel. Formate dehydrogenases are enzymes with the potential to catalyze this reaction; however they generally favor the reverse process, i.e., formate oxidation. By contrast, the formate dehydrogenase of the acetogen Clostridium carboxidivorans has been found to preferentially catalyze the reduction of CO2. This is in accord with its natural role to introduce CO2 as a carbon source in the Wood-Ljungdahl pathway. The direction of catalysis derives from the enzyme's low affinity for formate. This enzyme is therefore an excellent candidate for biotechnological applications aimed at producing formic acid and derivative chemicals from CO2.


Assuntos
Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Clostridium/enzimologia , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Ciclo do Carbono , Clostridium/genética , Formiato Desidrogenases/genética , Cinética , Oxirredução
12.
Bioresour Technol ; 115: 41-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22138593

RESUMO

Starch a cheap, abundant and renewable natural material has been chemically modified for many years. The popular modification acylation has been used to adjust rheological properties as well as deliver polymers with internal plasticizers and other potential uses. However the harsh reaction conditions required to produce these esters may limit their use, especially in sensitive applications (foods, pharmaceuticals, etc.). The use of enzymes to catalyse acylation may provide a suitable alternative due to high selectivities and mild reaction conditions. Traditional hydrolase-catalysed synthesis in non-aqueous apolar media is hard due to lack of polysaccharide solubility. However, acylated starch derivatives have recently been successfully produced in other non-conventional systems: (a) surfactant-solubilised subtilisin and suspended amylose in organic media; (b) starch nanoparticles dispersed in organic medium with immobilised lipase; (c) aqueous starch gels with lipase and dispersed fatty acids. We attempt a systematic review that draws parallels between the seemingly unrelated approaches described.


Assuntos
Enzimas/metabolismo , Amido/metabolismo , Acilação , Solubilidade
13.
Chem Commun (Camb) ; 47(2): 683-5, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21103513

RESUMO

The enzyme catalysed esterification of starch and fatty acids with terminal triple bonds is described. This material can be used as an acceptor for azide containing molecules, through azide/alkyne cycloaddition. The potential is illustrated by the production of fluorescently-labelled starch, and a biotinylated derivative which can bind streptavidin.


Assuntos
Amido/química , Alcinos/química , Azidas/química , Materiais Biocompatíveis/química , Catálise , Química Click , Cobre/química , Ciclização , Esterificação , Ácidos Graxos Insaturados/química
14.
BMC Biotechnol ; 10: 82, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21114817

RESUMO

BACKGROUND: Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. RESULTS: Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS) of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. CONCLUSIONS: Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values.


Assuntos
Lipase/metabolismo , Amido/química , Acilação , Ascomicetos/enzimologia , Cromatografia Gasosa , Esterificação , Imageamento por Ressonância Magnética
15.
J Biotechnol ; 133(4): 497-504, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18155313

RESUMO

The potential of the Aspergillus niger type A feruloyl esterase (AnFaeA) for the synthesis of various phenolic acid esters was examined using a ternary-organic reaction system consisting of a mixture of n-hexane, 1- or 2-butanol and water. Reaction parameters including the type of methyl hydroxycinnamate, the composition of the reaction media, the temperature, and the substrate concentration were investigated to evaluate their effect on initial rate and conversion to butyl esters of sinapic acids. Optimisation of the reaction parameters lead to 78% and 9% yield for the synthesis of 1-butyl and 2-butyl sinapate, respectively. For the first time, a feruloyl esterase was introduced in the reaction system as cross-linked enzyme aggregates (CLEAs), after optimisation of the immobilisation procedure, allowing the recycling and reuse of the biocatalyst. The inhibition of copper-induced LDL oxidation by hydroxycinnamic acids and their corresponding butyl esters was investigated in vitro. Kinetic analysis of the antioxidation process demonstrates that sinapate derivatives are effective antioxidants indicating that esterification increases the free acid's antioxidant activity especially on dimethoxylated compounds such as sinapic acid compared to methoxy-hydroxy-compounds such as ferulic acid.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacologia , Lipoproteínas LDL/metabolismo , Aspergillus niger/metabolismo , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/química , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...