Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(17): 3212-3225, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37551888

RESUMO

Many mechanisms have been proposed to explain acute antidepressant drug-induced activation of TrkB neurotrophin receptors, but several questions remain. In a series of pharmacological experiments, we observed that TrkB activation induced by antidepressants and several other drugs correlated with sedation, and most importantly, coinciding hypothermia. Untargeted metabolomics of pharmacologically dissimilar TrkB activating treatments revealed effects on shared bioenergetic targets involved in adenosine triphosphate (ATP) breakdown and synthesis, demonstrating a common perturbation in metabolic activity. Both activation of TrkB signaling and hypothermia were recapitulated by administration of inhibitors of glucose and lipid metabolism, supporting a close relationship between metabolic inhibition and neurotrophic signaling. Drug-induced TrkB phosphorylation was independent of electroencephalography slow-wave activity and remained unaltered in knock-in mice with the brain-derived neurotrophic factor (BDNF) Val66Met allele, which have impaired activity-dependent BDNF release, alluding to an activation mechanism independent from BDNF and neuronal activity. Instead, we demonstrated that the active maintenance of body temperature prevents activation of TrkB and other targets associated with antidepressants, including p70S6 kinase downstream of the mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3ß (GSK3ß). Increased TrkB, GSK3ß, and p70S6K phosphorylation was also observed during recovery sleep following sleep deprivation, when a physiological temperature drop is known to occur. Our results suggest that the changes in bioenergetics and thermoregulation are causally connected to TrkB activation and may act as physiological regulators of signaling processes involved in neuronal plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hipotermia , Animais , Camundongos , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Mamíferos/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais
2.
Neurobiol Aging ; 129: 62-71, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271045

RESUMO

Increasing evidence suggests that the gut-brain axis plays a crucial role in Parkinson's disease (PD). The abnormal accumulation of aggregated alpha-synuclein (aSyn) in the brain is a key pathological feature of PD. Intracerebral 6-hydroxydopamine (6-OHDA) is a widely used dopaminergic lesion model of PD. It exerts no aSyn pathology in the brain, but changes in the gut have not been assessed. Here, 6-OHDA was administered unilaterally either to the rat medial forebrain bundle (MFB) or striatum. Increased levels of glial fibrillary acidic protein in the ileum and colon were detected at 5 weeks postlesion. 6-OHDA decreased the Zonula occludens protein 1 barrier integrity score, suggesting increased colonic permeability. The total aSyn and Ser129 phosphorylated aSyn levels were elevated in the colon after the MFB lesion. Both lesions generally increased the total aSyn, pS129 aSyn, and ionized calcium-binding adapter molecule 1 (Iba1) levels in the lesioned striatum. In conclusion, 6-OHDA-induced nigrostriatal dopaminergic damage leads to increased aSyn levels and glial cell activation particularly in the colon, suggesting that the gut-brain axis interactions in PD are bidirectional and the detrimental process may start in the brain.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Ratos , Animais , Oxidopamina , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Colo/metabolismo
3.
Prog Neurobiol ; 206: 102140, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403718

RESUMO

Depression is frequently associated with sleep problems, and clinical improvement often coincides with the normalization of sleep architecture and realignment of circadian rhythm. The effectiveness of treatments targeting sleep in depressed patients, such as sleep deprivation, further demonstrates the confluence of sleep and mood. Moreover, recent studies showing that the rapid-acting antidepressant ketamine influences processes related to sleep-wake neurobiology have led to novel hypotheses explaining rapid and sustained antidepressant effects. Despite the available evidence, studies addressing ketamine's antidepressant effects have focused on pharmacology and often overlooked the role of physiology. To explore this discrepancy in research on rapid-acting antidepressants, we examined articles published between 2009-2019. A keyword search algorithm indicated that vast majority of the articles completely ignored sleep. Out of the 100 most frequently cited preclinical and clinical research papers, 89 % and 71 %, respectively, did not mention sleep at all. Furthermore, only a handful of these articles disclosed key experimental variables, such as the times of treatment administration or behavioral testing, let alone considered the potential association between these variables and experimental observations. Notably, in preclinical studies, treatments were preferentially administered during the inactive period, which is the polar opposite of clinical practice and research. We discuss the potential impact of this practice on the results in the field. Our hope is that this perspective will serve as a wake-up call to (re)-examine rapid-acting antidepressant effects with more appreciation for the role of sleep and chronobiology.


Assuntos
Sono , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ritmo Circadiano/efeitos dos fármacos , Humanos , Ketamina/farmacologia , Sono/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-32061743

RESUMO

Autoradiography (ARG) is a high-resolution imaging method for localization of radiolabeled biomarkers in ex vivo specimen. ARG using 2-deoxy-d-glucose (2-DG) method is used in to study drug actions on brain functional activity, as it provides results comparable to clinically used functional positron-emission tomography (PET). The requirement of slow analog detection methods and emerging advances in small animal PET imaging have, however, reduced the interest in ARG. In contrast to ARG, experimental animals need to be restrained or sedated/anesthetized for PET imaging, which strongly influence functional activity and thus complicate the interpretation of the results. Digital direct particle-counting ARG systems have gained attraction during the last decade to overcome the caveats of conventional ARG methods. Here we demonstrate that the well-established 2-DG imaging method can be adapted into use with contemporary digital detectors. This method readily and rapidly captures the characteristic effects of phencyclidine (5 mg/kg, i.p.), a dissociative agent targeting the NMDAR (N-methyl-d-aspartate receptor), on regional glucose utilization in the adult mouse brain. Pretreatment with antipsychotic drug clozapine (6 mg/kg, i.p.) essentially abolishes these effects of phencyclidine on brain functional activity. Digital ARG produces viable data for the regional analysis of functional activity in a fraction of time required for film development. These results support the use of digital ARG in preclinical drug research, where high throughput and response linearity are preferred and use of sedation/anesthesia has to be avoided.


Assuntos
Anestesia , Autorradiografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Clozapina/farmacologia , Fenciclidina/toxicidade , Animais , Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Alucinógenos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Neurosci Lett ; 694: 29-33, 2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30447378

RESUMO

OBJECTIVES: Deep burst-suppressing isoflurane anesthesia regulates signaling pathways connected with antidepressant responses in the rodent brain: activation of TrkB neurotrophin receptor and inhibition of GSK3ß kinase (glycogen synthase kinase 3ß). The main objective of this study was to investigate whether EEG (electroencephalogram) burst suppression correlates with these intriguing molecular alterations induced by isoflurane. METHODS: Adult male mice pre-implanted with EEG recording electrodes were subjected to varying concentrations of isoflurane (1.0-2.0% ad 20 min) after which medial prefrontal cortex samples were collected for molecular analyses, and the data retrospectively correlated to EEG (+/- burst suppression). RESULTS: Isoflurane dose-dependently increased phosphorylation of TrkBY816, CREBS133 (cAMP response element binding protein), GSK3ßS9 and p70S6kT412/S424. The time spent in burst suppression mode varied considerably between individual animals. Notably, a subset of animals subjected to 1.0-1.5% isoflurane showed no burst suppression. While p-GSK3ßS9, p-CREBS133 and p-p70S6kT412/S424 levels were increased in the samples obtained also from these animals, p-TrkBY816 levels remained unaltered. CONCLUSIONS: Isoflurane dose-dependently regulates TrkB and GSK3ß signaling and dosing associated with therapeutic outcomes in depressed patients produces most prominent effects.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Antidepressivos/administração & dosagem , Glicogênio Sintase Quinase 3 beta/metabolismo , Isoflurano/administração & dosagem , Glicoproteínas de Membrana/metabolismo , Córtex Pré-Frontal , Proteínas Tirosina Quinases/metabolismo , Animais , Relação Dose-Resposta a Droga , Eletroencefalografia , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...