Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-21469010

RESUMO

In this study, the activity and diversity of nitrogen converters, ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), ammonia-oxidizing archaea (AOA) and Anammox bacteria in a pilot-scale membrane bioreactor (MBR) were investigated and monitored using amoA and 16S rDNA-based molecular tools. The pilot-scale MBR (100 m(3)/day) was located inside the full-scale Pasakoy Advanced Wastewater Treatment Plant (WWTP), and operated for approximately 5 months without sludge purge. During 148 days of operation, volatile suspended solids (VSS) concentration increased from 2,454 mg/L to 10,855 mg/L and the average organic carbon and ammonia nitrogen removal rates were 92% and 99%, respectively. Real-time PCR results indicated that the fraction of AOB increased from 2.94% to 4.05% when VSS concentration reached to 3,750 mg/L throughout 148 days of operation. At higher VSS concentrations, the fraction of AOB declined gradually to 1.15% while the fraction of Nitrospira population was varied between 8.23 and 13.01%. However, significant change or any positive and negative correlations between VSS concentration and Nitrospira population were not observed in this period. The phylogenetic analysis revealed that MBR harbored diverse AOB community which was related to the Nitrosomonas and Nitrosospira lineage. Candidatus Nitrospira defluvii was the only detected NOB in this study.


Assuntos
Archaea/metabolismo , Bactérias Anaeróbias/metabolismo , Reatores Biológicos , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Amônia/metabolismo , Archaea/classificação , Archaea/genética , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Biodegradação Ambiental , Biodiversidade , Carbono/metabolismo , Oxirredução , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Esgotos/química , Turquia
2.
J Environ Manage ; 92(3): 714-23, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20974516

RESUMO

The presence of ammonia nitrogen in landfill leachates poses a significant problem for treatment plant operators. The nitrification-denitrification process mostly carries out the nitrogen conversion in biological treatment systems. However, recent research shows that other processes by anaerobic ammonia-oxidizing bacteria (Anammox) and ammonia-oxidizing archaea (AOA) were also responsible for the removal of nitrogen in biological systems. In this study, the nitrogen-converting microorganisms in the Bursa Hamitler Leachate Treatment Plant were identified and monitored by using molecular tools. Fluorescent in situ hybridization (FISH) and slot-blot hybridization results showed that the Nitrosomonas and Nitrospira species were the dominant ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), respectively. Quantitative real-time PCR results indicated that AOB, NOB, AOA and Anammox bacteria exist in the leachate treatment plant. However, the removal of ammonia can be ascribed mainly to nitrification because AOB (1.5%) and NOB (11.3%) were predominant among all nitrogen-converting bacteria. The results of the phylogenetic analysis based on amoA and 16S rDNA gene revealed that the uncultured bacterium clone 4-24, Kuenenia stuttgartiensis genome fragment KUST_E and the uncultured Crenarchaeota clone NJYPZT-C1 belong to AOB, Anammox and AOA populations, respectively, and were the dominant species in their cluster.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Nitrogênio/metabolismo , Bactérias/classificação , Sequência de Bases , Primers do DNA , Hibridização in Situ Fluorescente , Filogenia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...