Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 628(Pt B): 545-555, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007419

RESUMO

HYPOTHESIS: Different thermodynamic forces owing to the gradient of temperature, electrical potential, or concentration can drive ionic current through charged membranes. It has been recently shown that a viscosity gradient can drive an electrical current through a negatively charged nanochannel (Wiener and Stein, arXiv: 1807.09106). A model description of this phenomenon, based on the Maxwell-Stefan equation will help unravel the dominating physical mechanisms in so-called visco-migration. THEORY: To understand the physical mechanisms underlying this phenomenon, we employed the Maxwell-Stefan equation to develop a 1D model and obtain a relation between the flux of solvents and the driving forces. Viscosity gradients are known to drive transport, but the development of an electrical current has not been theoretically described prior to this work. FINDINGS: Our 1D model shows that the ionic current depends on the ideality of the solvent, though both ideal and non-ideal scenarios demonstrated good agreement with experimental data. We employed the model to understand the impact of solution bulk ionic strength and pH on the drift of ionic species with same reservoirs solution properties. Our modeling results unveiled the significant impact of bulk solution properties on the drift of ions which is in agreement with the experiments. Moreover, we have shown that the diffusion gradient along the nanochannel contributes significantly into driving ionic species if we even apply a small ionic concentration gradient to both reservoirs. Our modeling results may pave the way for finding novel applications for drift of ions in a diffusion gradient, which can be induced by connecting reservoirs of different viscosity fluids.


Assuntos
Viscosidade , Difusão , Íons/química , Concentração Osmolar , Solventes
2.
Phys Rev E ; 104(4-2): 045105, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781536

RESUMO

Pore structures and gas transport properties in porous separators for polymer electrolyte fuel cells are evaluated both experimentally and through simulations. In the experiments, the gas permeabilities of two porous samples, a conventional sample and one with low electrical resistivity, are measured by a capillary flow porometer, and the pore size distributions are evaluated with mercury porosimetry. Local pore structures are directly observed with micro-x-ray computed tomography (CT). In the simulations, the effective diffusion coefficients of oxygen and the air permeability in porous samples are calculated using random walk Monte Carlo simulations and computational fluid dynamics (CFD) simulations, respectively, based on the x-ray CT images. The calculated porosities and air permeabilities of the porous samples are in good agreement with the experimental values. The simulation results also show that the in-plane permeability is twice the through-plane permeability in the conventional sample, whereas it is slightly higher in the low-resistivity sample. The results of this study show that CFD simulation based on micro-x-ray CT images makes it possible to evaluate anisotropic gas permeabilities in anisotropic porous media.

3.
Electrophoresis ; 42(21-22): 2206-2214, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34472124

RESUMO

Resistive pulse sensing using solid-state nanopores provides a unique platform for detecting the structure and concentration of molecules of different types of analytes in an electrolyte solution. The capture of an entity into a nanopore is subject not only to the electrostatic force but also the effect of electroosmotic flow originating from the charged nanopore surface. In this study, we theoretically analyze spherical particle electrophoretic behavior near the entrance of a charged nanopore. By investigating the effects of pore size, particle-pore distance, and salt concentration on particle velocity, we summarize dominant mechanisms governing particle behavior for a range of conditions. In the literature, the Helmholtz-Smoluchowski equation is often adopted to evaluate particle translocation by considering the zeta potential difference between the particle and nanopore surfaces. We point out that, due to the difference of the electric field inside and outside the nanopore and the influence from the existence of the particle itself, the zeta potential of the particle, however, needs to be at least 30% higher than that of the nanopore to allow the particle to enter into the nanopore when its velocity is close to zero. Accordingly, we summarize the effective salt concentrations that enable successful particle capture and detection for different pore sizes, offering direct guidance for nanopore applications.


Assuntos
Eletroforese , Nanoporos , Eletricidade , Eletro-Osmose , Eletricidade Estática
4.
Electrophoresis ; 42(7-8): 834-868, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382088

RESUMO

Electroosmotic flow (EOF), a consequence of an imposed electric field onto an electrolyte solution in the tangential direction of a charged surface, has emerged as an important phenomenon in electrokinetic transport at the micro/nanoscale. Because of their ability to efficiently pump liquids in miniaturized systems without incorporating any mechanical parts, electroosmotic methods for fluid pumping have been adopted in versatile applications-from biotechnology to environmental science. To understand the electrokinetic pumping mechanism, it is crucial to identify the role of an ionically polarized layer, the so-called electrical double layer (EDL), which forms in the vicinity of a charged solid-liquid interface, as well as the characteristic length scale of the conducting media. Therefore, in this tutorial review, we summarize the development of electrical double layer models from a historical point of view to elucidate the interplay and configuration of water molecules and ions in the vicinity of a solid-liquid interface. Moreover, we discuss the physicochemical phenomena owing to the interaction of electrical double layer when the characteristic length of the conducting media is decreased from the microscale to the nanoscale. Finally, we highlight the pioneering studies and the most recent works on electro osmotic flow devoted to both theoretical and experimental aspects.


Assuntos
Eletro-Osmose , Microfluídica , Íons
5.
Micromachines (Basel) ; 11(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256113

RESUMO

Transport-induced-charge (TIC) phenomena, in which the concentration imbalance between cations and anions occurs when more than two chemical potential gradients coexist within an ultrathin dimension, entail numerous nanofluidic systems. Evidence has indicated that the presence of TIC produces a nonlinear response of electroosmotic flow to the applied voltage, resulting in complex fluid behavior. In this study, we theoretically investigate thermal effects due to Joule heating on TIC phenomena in an ultrathin nanopore by computational fluid dynamics simulation. Our modeling results show that the rise of local temperature inside the nanopore significantly enhances TIC effects and thus has a significant influence on electroosmotic behavior. A local maximum of the solution conductivity occurs near the entrance of the nanopore at the high salt concentration end, resulting in a reversal of TIC across the nanopore. The Joule heating effects increase the reversal of TIC with the synergy of the negatively charged nanopore, and they also enhance the electroosmotic flow regardless of whether the nanopore is charged. These theoretical observations will improve our knowledge of nonclassical electrokinetic phenomena for flow control in nanopore systems.

6.
ACS Omega ; 5(28): 17193-17198, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715204

RESUMO

Metal organic frameworks (MOFs) are promising porous materials for the adsorption of CO2. Here, we report the study of a luminescent MOF (LMOF), called LMOF-202. We have employed Grand Canonical Monte Carlo (GCMC) simulations to understand and explain the adsorption phenomena inside LMOF-202, and based on the phenomena happening at the molecular level, we have varied the metal ions in LMOF-202 to increase the CO2 affinity and selectivity of the material. We show that the CO2 adsorption capacity and selectivity can be increased by approximately 1.5 times at 1 bar and 298 K by changing the metal ion from Zn to Ba. We also report the feasibility of using this material to capture CO2 from flue gas under realistic conditions (1 bar and 298 K). This work shows that LMOF-202 merits further consideration as a carbon capture adsorbent.

7.
Electrophoresis ; 41(12): 1067-1072, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32333410

RESUMO

Despite the significant influence of solution temperature on the structure of electrical double layer, the lack of theoretical model intercepts us to explain and predict the interesting experimental observations. In this work, we study the structure of electrical double layer as a function of thermochemical properties of the solution by proposing a phenomenological temperature dependent surface complexation model. We found that by introducing a buffer layer between the diffuse layer and stern layer, one can explain the sensitivity of zeta potential to temperature for different bulk ion concentrations. Calculation of the electrical conductance as function of thermochemical properties of solution reveals the electrical conductance not only is a function of bulk ion concentration and channel height but also the solution temperature. The present work model can provide deep understanding of micro- and nanofluidic devices functionality at different temperatures.


Assuntos
Condutividade Elétrica , Modelos Químicos , Temperatura , Íons/química , Dióxido de Silício/química , Propriedades de Superfície , Água
8.
J Colloid Interface Sci ; 534: 195-204, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223200

RESUMO

It has been a long-lasting debate on the position of zeta potential plane within aqueous solutions. This paper reports a flexible behavior of the inactive electrokinetic layer between the outer-Helmholtz plane and zeta potential plane, so-called buffer layer, in response to bulk ion concentration. This flexibility is not only corroborated by analyzing the measured zeta potentials with resulting electrical quad-layer model (inner- and outer-Helmholtz, buffer, and diffuse layers) but also consistent with thermodynamic analysis. The model indicates that the flexible buffer layer thickness saturates to its minimum for concentrated solutions. The predicted ionic conductance agrees well with the previous experimental measurements in nanochannels. The theory provides a deep physical insight into understanding, design, and manipulation of ion transport in nanosystems.

9.
J Colloid Interface Sci ; 529: 214-223, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29894940

RESUMO

Modeling of electro-chemo-mechanical transport phenomena in simple (nanochannel) or complex (nanoporous media) geometries with inhomogeneous surface charge and overlapped electric double layers remains challenging. This bottleneck originates from lack of a comprehensive model to predict the local surface charge density based on the variable local solution properties. This work aims to propose a model, so-called representative bulk layer (RBL), which makes the chemically non-isolated solid-liquid interfaces (due to the electric double layers interaction) as isolated interfaces by introducing a local effective bulk ion concentration. Using RBL together with the electrical triple layer model to provide boundary conditions for the multi-physio-chemical transport equations (PNP + NS), we investigate the reverse electrodialysis (RED) in nanochannels. Our modeling results indicate that the length of an ion-selective membrane not only influences the ionic current but also the logarithm of the slope of current-voltage curve increases linearly with the ratio of nanochannel length to height. This interesting finding inspires us to propose a dimensionless relation for the current-voltage curve that is independent of the nanochannel dimensions. The present contribution numerical framework could shed light on the electro-chemo-mechanical transport mechanism through nanofluidic devices and membranes.

10.
Electrophoresis ; 38(5): 580-595, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862052

RESUMO

Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle in a confined space could provide detailed insights into its broad applications from biology to geology. In the present study, we developed a direct simulation method with the effects of inhomogeneously acquired charges on the particle surface considered, which has been validated by the available analytical and experimental data. Modeling results reveal that the surface charge and zeta potential, which are acquired through chemical interactions, strongly depend on the local solution properties and the particle size. The surface charge and zeta potential of the particle would significantly vary with the tangential positions on the particle surface by increasing the particle radius. Moreover, regarding the streaming potential for a particle-fluid tube system, our results uncover that the streaming potential has a reverse relation with the particle size in a micro or nanotube. To explain this phenomenon, we present a simple relation that bridges the streaming potential with the particle size and tube radius, zeta potential, bulk and surface conductivity. This relation could predict good results specifically for higher ion concentrations and provide deeper understanding of the particle size effects on the streaming potential measurements of the particle fluid tube system.


Assuntos
Simulação por Computador , Eletro-Osmose/métodos , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Íons , Nanotubos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...