Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(30): 18968-18974, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775898

RESUMO

Hydrocarbons that are transported in a hierarchal path from the nanoporous constituents of a shale matrix to natural and then hydraulic fractures are subject to continuous fractionation during the journey. The organic nanopores of a source rock matrix known as kerogen have pore sizes on the angstrom scale. At that degree of confinement, pores can act as a selective membrane, preferentially maintaining some components over the others in a continuous fractionation phenomenon that alters the adsorption/desorption isotherm. Several studies have considered the adsorption/desorption behavior of kerogen on the basis of a single component. In reality, methane is associated with other hydrocarbons, making that assumption questionable. The present work investigates the multicomponent gas sorption of kerogen structures via a molecular computational approach. The continuous fractionation results in the accumulation of heavier components. The compositional changes alter the phase behavior, enlarging the anticipated two-phase regime. Additionally, the ability of molecules to diffuse from kerogen was also found to be affected by the fractionation effect. These microscale effects provide some insights into the potential factors that influence the productivity at the reservoir scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...