Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 334: 122182, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863258

RESUMO

AIM: Valproic acid (VPA) belongs to the first-generation antiepileptic drugs, yet its prolonged use can cause life-threatening liver damage. The importance of our study is to investigate the protective effect of indole-3-acetic acid (IAA), chenodeoxycholic acid (CDCA) and their combination on VPA-induced liver injury focusing on lipopolysaccharides (LPS)/toll-like receptor 4 (TLR4) pathway and farnesoid X receptor (FXR). METHODS: Thirty rats were randomly assigned into five groups, normal control group, VPA group received 500 mg/kg of VPA intraperitoneally. The remaining groups were orally treated with either 40 mg/kg of IAA, 90 mg/kg of CDCA, or a combination of both, along with VPA. All treatments were administered one hour after the administration of VPA for three weeks. KEY FINDINGS: VPA group showed significant elevations in the liver weight/body weight ratio, serum aminotransferases, triglyceride, and total cholesterol levels. Hepatic glutathione (GSH) level and superoxide dismutase (SOD) activity were significantly decreased, while malondialdehyde (MDA) level, tumor necrosis factor-α (TNF-α), interleukin-1beta (IL-1ß), lipopolysaccharide (LPS) and caspase 3 were significantly increased. Likewise, immunohistochemical analysis revealed that TLR4 expression was elevated, whereas FXR expression was downregulated in hepatocytes. IAA substantially ameliorated all previously altered parameters, whereas CDCA treatment showed a partial improvement compared to IAA. Surprisingly, combination therapy of IAA with CDCA showed an additive effect only in the hepatic expression of TLR4 and FXR proteins. SIGNIFICANCE: IAA could be a promising protective agent against VPA-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Lipopolissacarídeos , Ratos , Animais , Lipopolissacarídeos/farmacologia , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/metabolismo , Receptor 4 Toll-Like/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...