Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Life ; 15(1): 89-97, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35186141

RESUMO

This study aimed to compare the antimicrobial effect of an aqueous extract Red Roselle calyx (RE), Chlorhexidine (CH), Amoxicillin-clavulanic acid (ACA), Tetracycline (Tet), and Metronidazole (Met)on Streptococcus mutans (S. mutans), Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) bacteria. The bacterial inhibition zones (BIZ)of the RE (25, 50, 75, 100) mg/ml and CH solutions (0.2%, 2%) were determined using the agar well diffusion method. Additionally, the susceptibility of the tested bacteria against (30 µg) of standard antibiotics of ACA, Tet, and Met was examined. The bacterial minimum inhibitory concentration (MIC) was measured using the Broth Micro dilution method (BMDM). All tests were carried out in triplicates, and water was considered the negative control. For S. mutans, the RE at 50 mg/ml or above concentrations displayed higher BIZ than 0.2% CH. 100 mg/ml of RE recorded a greater BIZ than the 2% CH. The greater BIZ against S. mutans was recorded by Tet. A comparable effect was found with 0.2% CH (75, 100) mg/ml of the RE against S. aureus. Greater BIZ for S. aureus and E. faecalis were reported for 100 mg/ml RE compared to the Tet and Met RE at 100 mg/ml inhibited the E. faecalis growth in a zone size comparable to the CH (0.2%, 2%).The RE with 50,100 mg/ml concentrations showed comparable antimicrobial effect to 0.2%, 2% concentrations of CH, respectively. As an herbal substitute for commercial disinfectants, the RE can be considered an effective final endodontic irrigant and dental mouthwash.


Assuntos
Hibiscus , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Streptococcus mutans
2.
Int J Dent ; 2021: 6676005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531902

RESUMO

Peracetic acid (PAA) is widely used as a sterilizing/disinfecting agent, and, in endodontics, it has been introduced as a promising irrigant in root canal treatment. It has been used at different concentrations to achieve various functions. However, endodontic instruments in contact with PAA of a certain concentration may affect their fatigue resistance. Therefore, the aim of this study was to investigate the impact of PAA on the cyclic fatigue resistance of three commercial heat-treated nickel-titanium (NiTi) rotary files. Three types of heat-treated NiTi rotary files were selected: One Curve (OC), ProTaper Gold (PTG), and Wave One Gold (WOG). Each type was divided into three subgroups (n = 6 for each file type): (1) untreated instruments; (2) files immersed in 0.002% PAA; and (3) files immersed in 0.35% PAA. The performance of each file type was tested in a simulated canal. The number of cycles to fracture (NCF) was determined to assess cyclic fatigue resistance of the files. Independent sample t-test was applied to compare each treated file within a subgroup with its respective control group, and one-way ANOVA was used for comparison among the main groups. All types of tested files revealed a significant decline in the cyclic fatigue resistance after exposure to 0.002% PAA except the PTG (P=0.209). After exposure of the files to a higher concentration (0.35% PAA), a dramatic reduction was demonstrated by all the groups. Before and after exposure of the files to PAA, PTG displayed the highest cyclic fatigue resistance, followed by the WOG, while the OC showed the lowest resistance. Exposure of heated-treated NiTi files to PAA in a relatively high or low concentration adversely affects the cyclic fatigue resistance. The PTG files demonstrated the best performance among the tested types and can be disinfected with 0.002% PAA for clinical purpose.

3.
Int J Dent ; 2020: 8831813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33144858

RESUMO

Biodentine is a calcium silicate cement (CSC) that has been broadly applied in vital pulp therapy. The quality of the Biodentine-composite bond has a significant effect on the longevity of the definitive restoration. The aim of this study is to investigate the shear bond strength (SBS) between Biodentine and composite restoration at different maturation times of Biodentine aged in artificial saliva. Fifteen Biodentine discs were allocated into three groups (n = 5) based on the timeframe of performance of composite restoration: immediate (after 12 min), after 14 days, and after 28 days of Biodentine maturation. Total etch and rinse adhesive system and bulk-fill regular resin composite were used. The shear bond strength and the failure pattern were assessed. One-way ANOVA with the Bonferroni post hoc test was applied for statistical analysis at p < 0.05. The highest (32.47 ± 8.18 MPa) and the lowest (4.08 ± 0.81 MPa) SBS values were recorded for 14 days and 12 min groups, respectively. Significant statistical differences were reported among the groups, and a high statistically significant difference was found between the immediate group and the other groups. Adhesive failure patterns were evident in all groups. More clinically acceptable bond strength between the Biodentine and overlaid composite restoration is at 14 days after Biodentine maturation. Delaying the coverage of Biodentine later than 14 days may significantly reduce the SBS. Using the artificial saliva as an aging medium may affect the SBS between Biodentine and composite material.

4.
Clin Oral Investig ; 23(5): 2279-2285, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30293187

RESUMO

OBJECTIVES: The aim of this study was to see the effect of Er:YAG laser irradiation in dentine and compare this with its effect in enamel. The mechanism of crack propagation in dentine was emphasised and its clinical implications were discussed. MATERIALS AND METHODS: Coronal sections of sound enamel and dentine were machined to 50-µm thickness using a FEI-Helios Plasma (FIB). The specimen was irradiated for 30 s with 2.94-µm Er:YAG laser radiation in a moist environment, using a sapphire dental probe tip, with the tip positioned 2 mm away from the sample surface. One of the sections was analysed as a control and not irradiated. Samples were analysed using the Zeiss Xradia 810 Ultra, which allows high spatial resolution, nanoscale 3D imaging using X-ray computed tomography (CT). RESULTS: Dentine: In the peritubular dentine, micro-cracks ran parallel to the tubules whereas in the inter-tubular region, the cracks ran orthogonal to the dentinal tubules. These cracks extended to a mean depth of approximately 10 µm below the surface. On the dentine surface, there was preferential ablation of the less mineralised intertubular dentine, and this resulted in an irregular topography associated with tubules. Enamel: The irradiated enamel surface showed a characteristic 'rough' morphology suggesting some preferential ablation along certain microstructure directions. There appears to be very little subsurface damage, with the prismatic structure remaining intact. CONCLUSIONS: A possible mechanism is that laser radiation is transmitted down the dentinal tubules causing micro-cracks to form in the dentinal tubule walls that tend to be limited to this region. CLINICAL RELEVANCE: Crack might be a source of fracture as it represents a weak point and subsequently might lead to a failure in restorative dentistry.


Assuntos
Esmalte Dentário/diagnóstico por imagem , Dentina/diagnóstico por imagem , Lasers de Estado Sólido , Dente , Humanos , Microscopia Eletrônica de Varredura , Tomografia Computadorizada por Raios X
5.
Eur J Dent ; 12(3): 380-385, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147403

RESUMO

OBJECTIVES: The purpose of this study was to determine if Er: YAG laser etching improves the shear bond strength (SBS) of Biodentin™ and GC Fuji IX® to dentine. MATERIALS AND METHODS: Forty human dentine specimens were standardized and embedded in stone. The specimens were randomized into four groups (n = 10). Twenty samples were treated with the Er: YAG laser radiation and 10 of these restored with GC Fuji IX® and 10 with Biodentine™. The remaining 20 specimens acted as controls (no laser treatment); 10 were restored with GC Fuji IX® and 10 with Biodentin™. All samples were then stored in an incubator at 37.5°C and 100% humidity for 7 days. The SBS was determined using a Zwick universal testing machine. A two-way analysis of variance test was used to evaluate the statistical difference in SBS between the groups. An independent sample t-test was used to determine the statistical significance of differences between control and lased groups within the same material. RESULTS: A highly statistically significant difference in SBS was found with the laser treatment (P = 0.0001) and material (i.e., Biodentin™ or Fuji IX® (P = 0.0001). The GC Fuji IX® group recorded the highest mean SBS required to dislodge the material from the laser-treated dentine surface (1.77 ± 0.22 Mega-Pascal [MPa]). The mean SBS of Biodentin™ to dentine following the laser radiation (1.12 ± 0.16 MPa) was significantly greater compared to the nonlased dentine (0.53 ± 0.09). Pearson Chi-square test indicated a nonsignificant relation between shear strength and mode of failure (P = 0.467). CONCLUSION: Laser etching of the dentine surfaces yielded a significant increase in the bond strength for both GC Fuji IX® and Biodentin™. The SBS of Biodentin™ to dentine is greater than with conventional glass ionomer (Fuji IX®).

6.
Microsc Res Tech ; 81(8): 887-896, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29785759

RESUMO

The aim was to investigate the effect of the Er-YAG laser radiation on morphology and chemical composition of enamel, dentin, and bone. The specimens of the three groups were irradiated with a very long pulse mode (VLP) of 2.94 µm Er-YAG laser with 100 mJ pulse energy and energy density of 8.42 J/ c m 2 for 30 s, at a repetition rate of 15 Hz. The organic and inorganic content of the samples were investigated by Fourier Transforms Infrared spectroscopy (FTIR). The morphological characteristics were investigated with scanning electron microscopy (SEM) and elemental analysis (calcium and phosphorus) with energy-dispersive X-ray spectroscopy (EDX). FTIR data were analyzed with a One-Way ANCOVA test and EDX data with the independent sample t-test. Following the laser radiation, FTIR showed a significant decrease in the organic content of all tissues. The weight percentage (wt %) calcium content of dentin and bone increased significantly following irradiation with a p-value of .002 for both tissues, but the wt % of phosphorus content was not influenced significantly. The morphological alterations expressed signs of fusion in all the samples.


Assuntos
Osso e Ossos/efeitos da radiação , Esmalte Dentário/efeitos da radiação , Dentina/efeitos da radiação , Compostos Inorgânicos/análise , Lasers de Estado Sólido , Terapia com Luz de Baixa Intensidade , Compostos Orgânicos/análise , Dente Pré-Molar/química , Dente Pré-Molar/efeitos da radiação , Dente Pré-Molar/ultraestrutura , Osso e Ossos/química , Osso e Ossos/ultraestrutura , Esmalte Dentário/química , Esmalte Dentário/ultraestrutura , Dentina/química , Dentina/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...