Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1399092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903530

RESUMO

Introduction: Previous publications have shown that STIM1, ORAI1, and KDM2B, are implicated in Ca2+ signaling and are highly expressed in various cancer subtypes including prostate cancer. They play multiple roles in cancer cell migration, invasion, and metastasis. In the current study we investigated the expression of the above biomarkers in circulating tumor cells from patients with metastatic prostate cancer. Methods: Thirty-two patients were enrolled in this study and CTCs' isolation was performed with Ficoll density gradient. Two different triple immunofluorescence stainings were conducted with the following combination of antibodies: CK/KDM2B/CD45 and CK/STIM1/ORAI1. Slides were analyzed using VyCAP microscopy technology. Results: CTC-positive patients were detected in 41% for (CK/KDM2B/CD45) staining and in 56% for (CK/STIM1/ORAI1) staining. The (CK+/KDM2B+/CD45-) and the (CK+/STIM1+/ORAI1+) were the most frequent phenotypes as they were detected in 85% and 94% of the CTC-positive patients, respectively. Furthermore, the expression of ORAI1 and STIM1 in patients' PBMCs was very low exhibiting them as interesting specific biomarkers for CTC detection. The (CK+/STIM1+/ORAI1+) phenotype was correlated to bone metastasis (p = 0.034), while the (CK+/STIM1+/ORAI1-) to disease relapse (p = 0.049). Discussion: STIM1, ORAI1, and KDM2B were overexpressed in CTCs from patients with metastatic prostate cancer. STIM1 and ORAI1 expression was related to disease recurrence and bone metastasis. Further investigation of these biomarkers in a larger cohort of patients will clarify their clinical significance for prostate cancer patients.

2.
Saudi Pharm J ; 32(7): 102109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38817821

RESUMO

KDM2B, a histone lysine demethylase, is expressed in a plethora of cancers. Earlier studies from our group, have showcased that overexpression of KDM2B in the human prostate cancer cell line DU-145 is associated with cell adhesion, actin reorganization, and improved cancer cell migration. In addition, we have previously examined changes of cytosolic Ca2+, regulated by the pore-forming proteins ORAI and the Ca2+ sensing stromal interaction molecules (STIM), via store-operated Ca2+ entry (SOCE) in wild-type DU-145. This study sought to evaluate the impact of KDM2B overexpression on the expression of key molecules (SGK1, Nhe1, Orai1, Stim1) and SOCE. Furthermore, this is the first study to evaluate KDM2B expression in circulating tumor cells (CTCs) from patients with prostate cancer. mRNA levels for SGK1, Nhe1, Orai1, and Stim1 were quantified by RT-PCR. Calcium signals were measured in KDM2B-overexpressing DU-145 cells, loaded with Fura-2. Blood samples from 22 prostate cancer cases were scrutinized for KDM2B expression using immunofluorescence staining and the VyCAP system. KDM2B overexpression in DU-145 cells increased Orai1, Stim1, and Nhe1 mRNA levels and significantly decreased Ca2+ release. KDM2B expression was examined in 22 prostate cancer patients. CTCs were identified in 45 % of these patients. 80 % of the cytokeratin (CK)-positive patients and 63 % of the total examined CTCs exhibited the (CK + KDM2B + CD45-) phenotype. To conclude, this study is the first to report increased expression of KDM2B in CTCs from patients with prostate cancer, bridging in vitro and preclinical assessments on the potentially crucial role of KDM2B on migration, invasiveness, and ultimately metastasis in prostate cancer.

3.
PeerJ ; 11: e16074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744224

RESUMO

Background: The purpose of this study is to analyzed the involvement of chorein in microtubules organization of three types of malignant; rhabdomyosarcoma tumor cells (ZF), rhabdomyosarcoma cells (RH30), and rhabdomyosarcoma cells (RD). ZF are expressing high chorein levels. Previous studies revealed that chorein protein silencing in ZF tumor cells persuaded apoptotic response followed by cell death. In addition, in numerous malignant and non-malignant cells this protein regulates actin cytoskeleton structure and cellular signaling. However, the function of chorein protein in microtubular organization is yet to be established. Methods: In a current research study, we analyzed the involvement of chorein in microtubules organization by using three types of malignant rhabdomyosarcoma cells. We have applied confocal laser-scanning microscopy to analyze microtubules structure and RT-PCR to examine cytoskeletal gene transcription. Results: We report here that in rhabdomyosarcoma cells (RH30), chorein silencing induced disarrangement of microtubular network. This was documented by laser scanning microscopy and further quantified by FACS analysis. Interestingly and in agreement with previous reports, tubulin gene transcription in RH cells was unchanged upon silencing of chorein protein. Equally, confocal analysis showed minor disordered microtubules organization with evidently weakened staining in rhabdomyosarcoma cells (RD and ZF) after silencing of chorein protein. Conclusion: These results disclose that chorein silencing induces considerable structural disorganization of tubulin network in RH30 human rhabdomyosarcoma tumor cells. Additional studies are now needed to establish the role of chorein in regulating cytoskeleton architecture in tumor cells.


Assuntos
Rabdomiossarcoma , Tubulina (Proteína) , Proteínas de Transporte Vesicular , Humanos , Citoesqueleto de Actina , Citoesqueleto/genética , Microtúbulos , Rabdomiossarcoma/genética , Linhagem Celular Tumoral , Proteínas de Transporte Vesicular/genética
4.
Animals (Basel) ; 13(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37508024

RESUMO

The Sox gene family constitutes transcription factors with a conserved high mobility group box (HMG) that regulate a variety of developmental processes, including sex differentiation, neural, cartilage, and early embryonic development. In this study, we systematically analyzed and characterized the 20 Sox genes from the whole buffalo genome, using comparative genomic and evolutionary analyses. All the buffalo Sox genes were divided into nine sub-groups, and each gene had a specific number of exons and introns, which contributed to different gene structures. Molecular phylogeny revealed more sequence similarity of buffalo Sox genes with those of cattle. Furthermore, evolutionary analysis revealed that the HMG domain remained conserved in the all members of the Sox gene family. Similarly, all the genes are under strong purifying selection pressure; seven segmental duplications occurred from 9.65 to 21.41 million years ago (MYA), and four potential recombination breakpoints were also predicted. Mutational analysis revealed twenty non-synonymous mutations with potential effects on physiological functions, including embryonic development and cell differentiation in the buffalo. The present study provides insights into the genetic architecture of the Sox gene family in buffalo, highlights the significance of mutations, and provides their potential utility for marker-assisted selection for targeted genetic improvement in buffalo.

5.
Saudi Pharm J ; 30(11): 1665-1671, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36465840

RESUMO

5-fluorouracil (5FU) is widely used to treat colorectal cancer (CC) and its main mechanisms of anticancer action are through generation of ROS which often result in inflammation. Here, we test the effect of Lycopene against 5FU in Caco2 cell line. Caco2 cells were exposed to 3 µg/ml of 5FU alone or with 60, 90, 120 µg/ml of lycopene. This was followed by assessment of cytotoxicity, oxidative stress, and gene expression of inflammatory genes. Our findings showed that Lycopene and 5FU co-exposure induced dose-dependent cytotoxic effect without compromising the membrane integrity based on the LDH assay. Lycopene also significantly enhanced 5FU-induced SOD activity and GSH level compared to control for all mixture concentrations (p < 0.01). Lycopene alone and combination with 5FU-induced expression of IL-1ß, TNF-α, and IL-6. Furthermore, IFN-γ expression was significantly enhanced by only mixture of lycopene (90 µg/ml) and 5FU (p < 0.05). In conclusion, Lycopene supplementation with 5FU therapy resulted in improvement in antioxidant parameters such as catalase and GSH levels giving the cell capacity to cope with 5FU-mediated oxidative stress. Lycopene also enhanced IFN-γ expression in the presence of 5FU, which may activate antitumor effects further enhancing the cancer killing effect of 5FU.

6.
Dose Response ; 20(1): 15593258211050532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35110975

RESUMO

Lung cancer is considered as one of the most serious disease worldwide. The progress of drug carriers based on nonmaterial, which selectively hold chemotherapeutic agents to cancer cells, has become a major focus in biomedical research. This study aimed to evaluate the growth inhibition and apoptosis induction of the human lung cancer cells (A-549) by Q-loaded SBA-15 conjugate system. Mesoporous silica nanoparticles (SBA-15) as host materials for transporting therapeutics medicaments were fabricated for targeted drug delivery toward lung cancer. With the objective of increasing bioavailability and aqueous solubility of flavonoids, SBA-15 was successfully loaded with the quercetin (Q)-a major flavonoid and characterized with the help of Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The biological investigation on A549 cell line confirmed that the efficacy of Q-SBA-15 is much higher than only Q. Moreover, the apoptotic pathway of synthesized Q-SBA-15 NPs examined that the Q-SBA-15-mediated apoptosis via PI3K/AKT/mTOR signaling pathway. Thus, the newly conjugated Q-SBA-15 system improved the apoptotic fate through caspase-mediated apoptosis via PI3K/AKT/mTOR signaling pathway and hence, it can be potentially employed as an anticancer agent for lung cancer.

7.
Saudi J Biol Sci ; 29(1): 154-160, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35002403

RESUMO

Iron oxides have become increasingly popular for their use as a diagnostic and therapeutic tool in oncology. This study aimed to improve pharmacological valuable of Fe3O4, which may be use to diagnosis colorectal cancers (CRC). Here, we have developed chitosan (CS) coated Fe3O4 through a cost-effective procedure. First, we determined the characterization of OA-C-Fe3O4 by FTIR, UV-Vis spectra, and TEM. Then, we evaluated the photodynamic therapeutic (PDT) activity of OA-C-Fe3O4 in human colorectal carcinoma cell lines (HCT 116). Current results revealed that the light-induced enhanced reactive oxygen species (ROS) activity of the nanoparticles (NPs) and caused cell death via the activity of caspase 9/3. The in vitro magnetic resonance imaging (MRI) experiments in (HCT 116) and human embryonic kidney cells (HEK 293) illustrated that nanohybrid is an effective MRI contrasting agents for the diagnosis of colorectal cancer.

8.
Saudi J Biol Sci ; 28(11): 6127-6132, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34759737

RESUMO

Hyperglycemia as a common metabolic disorder in diabetes led to oxidative stress, inflammation and other complications. Natural and manufactured antioxidants alleviates the side effects of diabetes. The purpose of current study is to investigate the effect of pyrroloquinoline quinine (PQQ) as an antioxidant on the content of glucose-induced oxidative stress generation in the cells of the human hepatocellular liver carcinoma (HepG2) by inhibiting advanced glycation end products (AGEs) formation. The HepG2 cells were exposed to high dose (50 mM) of glucose (HG) only and with PQQ (HG + PQQ). Treatment with high dose increased AGEs formation, expression of receptor for advanced glycation endproducts (RAGE), reactive oxygen species ROS production, and oxidative stress markers in treated HepG2 cells. Interestingly, PQQ significantly reduced AGEs formation and (RAGE) expression, ROS formation, and inflammation induced by glucose. In conclusion, PQQ has a potentiail role as an antioxidant to reduce the oxidative damage during hyperglycemia by AGEs inhibition.

9.
Oxid Med Cell Longev ; 2021: 5834418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257812

RESUMO

Despite recent advancements in cisplatin (cis-diamminedichloroplatinum II) and other platinum-based chemotherapeutic drugs for treating solid tumors, their uses are limited by either in terms of toxicity and/or acquired drug resistance. These side effects have a dangerous problem with higher dose for severe patients. To overcome the low therapeutic ratio of the free drug, a polymeric nanoparticle drug delivery system has been explored promoting delivery of cisplatin to tumors. Recently, the applications of nanoparticles (NPs) have been underlined for encouraging the effects of chemotherapeutic drugs in cancerous cells. The intention of this project is to assess the potential of poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) for enhancing the effects of anticancer drug cisplatin. For the purpose, we have synthesized PLGA-cisplatin nanoparticles for increasing its bioavailability and studied the comparative cytotoxicity of free cisplatin and PLGA-cisplatin against MCF-7 cancer cell lines and HEK-293 normal cell lines. We have also analyzed the hallmarks of PLGA-cisplatin-induced apoptosis. The outcomes of this study may provide the possibility of delivery of anticancer drug to their specific site, which could minimize toxicity and optimize the drug efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Cisplatino/uso terapêutico , Glicolatos/metabolismo , Poliésteres/metabolismo , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos
10.
Int J Med Sci ; 18(1): 199-206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390788

RESUMO

Islet amyloid polypeptide (amylin), consecrated by the pancreatic ß-cells with insulin, has a significant role to play in maintaining homeostasis of islet cell hormones. Alzheimer's disease is the predominant source of dementia. However, its etiology remains uncertain; it appears that type 2 diabetes mellitus and other prediabetic states of insulin resistance contribute to the intermittent Alzheimer's disease presence. Amylin is abnormally elevated in Type II diabetes patients, accumulated into amylin aggregates, and ultimately causes apoptosis of the ß-cells, and till date, its mechanism remains unclear. Several flavonoids have inhibitory effects on amylin amyloidosis, but its inhibition mechanisms are unknown. Screening a collection of traditional compounds revealed the flavone Chrysin, a potential lead compound. Chrysin inhibits amyloid aggregate formation according to Thioflavin T binding, turbidimetry assay. We report results of molecular interaction analysis of Chrysin with amylin which shows potent binding affinity against amylin. Pharmacokinetics and Drug likeness studies of Chrysin also suggest that it is a potential lead compound. Therefore, Chrysin prevented amylin aggregation.


Assuntos
Doença de Alzheimer/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flavonoides/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Flavonoides/uso terapêutico , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Simulação de Acoplamento Molecular , Agregação Patológica de Proteínas/etiologia , Agregação Patológica de Proteínas/patologia , Ligação Proteica , Ratos
11.
Toxicon ; 184: 152-157, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32531289

RESUMO

Aflatoxicosis is one of the threats that cause severe mortalities in fish farms. The dietary functional additives are a friendly approach attributed to beneficial effects on aquatic animals. The study aimed at evaluating the impact of Spirulina platensis (SP) on the biochemical indices and antioxidative function of Nile tilapia (Oreochromis niloticus) intoxicated with aflatoxin B1 (AFB1). A control diet and 3 test diets were enriched with 0% SP/0 mg AFB1/kg (control), 1% SP (SP), 2.5 mg AFB1/kg diet (AFB1), and 1% SP+2.5 mg AFB1/kg diet (SP/AFB1). The diets were supplied to three aquaria for each group twice daily at the rate of 2.5% for 30 days. The blood alanine transaminase (ALT), alkaline phosphatase (ALP), and aspartate transaminase (AST) were significantly increased by AFB1 toxicity with regards to fish fed the control and SP diets (P < 0.05). The inclusion of SP in the diet of tilapia intoxicated with AFB1 lowered the levels of ALT, AST, and ALP in comparison to fish contaminated with AFB1 without SP (P < 0.05). The total blood protein and albumin were decreased in fish contaminated with AFB1 (P < 0.05); however, the dietary SP resulted in improving the blood protein and albumin with similar levels with the control and SP diets. The urea and creatinine were increased in tilapia fed AFB1 diet without SP (P < 0.05); however, the inclusion of SP reduced the levels of urea and creatinine with similar levels with the control and SP diets. The antioxidative capacity of Nile tilapia fed SP and contaminated with AFB1 is expressed by superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) concentration. The activities of SOD and GSH were decreased by AFB1 (P < 0.05); however, dietary SP increased the SOD and GSH in fish fed AFB1. On the other hand, the concentration of MDA was increased in tilapia fed AFB1 (P < 0.05); however, SP decreased the level of MDA in fish fed AFB1. In conclusion, the application of SP in the aquafeed seems to be an innovative approach to relieve the toxic influences of AFB1 on aquatic animals.


Assuntos
Aflatoxina B1/toxicidade , Ciclídeos/fisiologia , Venenos/toxicidade , Spirulina/fisiologia , Alanina Transaminase/metabolismo , Ração Animal , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/metabolismo , Catalase/metabolismo , Creatinina/metabolismo , Dieta , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo
12.
Environ Sci Pollut Res Int ; 27(23): 28890-28898, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32415451

RESUMO

Agrochemicals are one the most significant sources of environmental pollution. Cytotoxicity and genotoxicity are the serious side effects of fungicide. In the current study, I have evaluated acute cytotoxicity and genotoxicity of triphenyltin (TPT) on human hepatic carcinoma (HepG2) cells and the ameliorating effect of ascorbic acid for 24 h. In this experiment, I have exposed HepG2 cells to ascorbic acids (50, 100, and 200 µM) simultaneously and 24 h prior triphenyltin (TPT, 400 ng/ml) exposure for 24 h to determine the protective effect of ascorbic acid by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and NRU (neutral red uptake) assays. Oxidative stress, such as intracellular reactive oxygen species and glutathione levels, was measured in HepG2 cells. The intracellular reactive oxygen species was evaluated using fluorescent probe DCFDA (6-carboxy-2',7' dichloro-dihydrofluorescein diacetate). Apoptosis and genotoxicity effects of TPT in HepG2 cells were determined using flow cytometry and comet assay. The result of these experiments showed that the TPT compound (400 ng/ml) induced cytotoxicity, oxidative stress and apoptosis, and DNA damage in HepG2 cells.Ascorbic acid reduced cytotoxicity, oxidative stress, apoptosis, and genotoxicity induced by TPT. Thus, ascorbic acid is a potent antioxidant, and it showed a significant protective effect against toxicity induced by TPT in HepG2 cells.


Assuntos
Ácido Ascórbico , Estresse Oxidativo , Sobrevivência Celular , Dano ao DNA , Fragmentação do DNA , Suplementos Nutricionais , Humanos , Fígado , Compostos Orgânicos de Estanho , Espécies Reativas de Oxigênio
13.
Oxid Med Cell Longev ; 2020: 9316751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104544

RESUMO

The current study was carried out to evaluate the ameliorative effect of fucoidan against aflatoxicosis-induced hepatorenal toxicity in streptozotocin-induced diabetic rats. Sixty-four Wister albino male rats were randomly assigned into eight groups (8 rats each) that received normal saline, fucoidan (FUC) at 100 mg/kg/day orally for 4 weeks, streptozotocin (STZ) at 50 mg/kg/i.p. single dose, STZ plus FUC, aflatoxin B1 (AFB1) at 50 µg/kg/i.p. after one month of the beginning of the experiment for 2 weeks, AFB1 plus FUC, STZ plus AFB1, or STZ plus AFB1 and FUC. Injection of rats with STZ induced hyperglycemia. Rats with STZ-induced diabetes, with or without AFB1 intoxication, had significantly elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, and levels of serum urea, creatinine, cholesterol, 8-oxo-2'-deoxyguanosine, interleukin-1ß, interleukin-6, and tumor necrosis factor-α. In addition, these rats exhibited increased lipid peroxidation and reduced glutathione concentration and activities of superoxide dismutase, catalase, and glutathione peroxidase enzymes in the hepatic and renal tissues. In contrast, administration of FUC to diabetic rats, with or without AFB1 intoxication, ameliorated the altered serum parameters, reduced oxidative stress, DNA damage, and inflammatory biomarkers, and enhanced the antioxidant defense system in the hepatic and renal tissues. These results indicated that FUC ameliorated diabetes and AFB1-induced hepatorenal injuries through alleviating oxidative stress, DNA damage, and inflammation.


Assuntos
Aflatoxina B1/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Polissacarídeos/uso terapêutico , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Dano ao DNA/efeitos dos fármacos , Glutationa/metabolismo , Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Estreptozocina/toxicidade , Superóxido Dismutase/metabolismo
14.
Environ Sci Pollut Res Int ; 27(11): 11663-11670, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31965510

RESUMO

Chlorpyrifos is an organophosphate pesticide whose exposure leads to inhibition of acetylcholinesterase (AChE) enzyme and induces oxidative stress, inflammation, and neurotoxicity. The current study was designed to evaluate the efficacy of carnosic acid (CA) in ameliorating CPF-induced cytotoxicity in mice brain and eye tissues. We allocated 40 male Swiss albino mice to receive DMSO 1% solution, oral CA 60 mg/kg/day bw, CPF 12 mg/kg/day bw via gastric gavage, or CPF plus CA at 30 and 60 mg/kg/day bw. Carnosic acid was administered once/day for 14 days, while CPF was administered in the last 7 days of the experiment. Biochemical analysis showed that CPF administration was associated with significant increases in the serum concentrations of interleukin-1ß, IL-6, and tumor necrosis factor-α, while it was associated with significant reductions in serum AChE levels in mice. Moreover, CPF-intoxicated mice exhibited significantly higher levels of malondialdehyde and nitric oxide in the brain and eye tissues. However, they had significantly lower levels of reduced glutathione, glutathione peroxidase, superoxide dismutase, and catalase in comparison with normal controls. Pretreatment with CA at 30 and 60 mg/kg/day bw for 14 days significantly alleviated all the aforementioned CPF-induced alterations in a dose-dependent manner; more frequent restorations of the normal control ranges were observed in the higher dose group. In conclusion, CA offers a neuroprotective effect against CPF-induced oxidative stress and inflammation and should be further studied in upcoming experimental and clinical research.


Assuntos
Clorpirifos , Inseticidas , Abietanos , Animais , Inflamação , Masculino , Camundongos , Estresse Oxidativo
15.
Environ Sci Pollut Res Int ; 27(3): 2935-2944, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31838672

RESUMO

Fucoidans (FUCs) are sulfated polysaccharides that have a wide range of bioactivities. The current study was designed to evaluate the antioxidant potential of FUC against microcystin-LR (MC-LR)-induced toxicity. Five mice groups (n = 8) were used. Group 1 received saline, Group 2 received oral FUC 100 mg/kg/day for 21 days, Group 3 received i.p. MC-LR 10 µg/kg/day for 14 days, Group 4 received MC-LR plus FUC 50 mg/kg/day, and Group 5 received MC-LR plus FUC 100 mg/kg/day. The present study showed that MC-LR administration was associated with significant increases (p < 0.01) in serum concentrations of hepatic (aspartate transferase, alanine transferase, and alkaline phosphatase), renal (urea and creatinine), and cardiac (creatine kinase and CK-MB) injury biomarkers, as well as serum lactate dehydrogenase, cholesterol, and pro-inflammatory cytokines (interleukins-1ß and 6, and tumor necrosis factor-α), compared with the control group. Further, MC-LR-intoxicated mice exhibited significantly higher (p < 0.01) hepatic, renal, and cardiac tissue levels of malondialdehyde and nitric oxide, as well as lower tissue levels of reduced glutathione and activities of glutathione peroxidase, superoxide dismutase, and catalase enzymes in comparison with control mice. Treatment by FUC significantly ameliorated all the above-mentioned alterations in a dose-dependent manner with frequent restoration of the normal ranges in the FUC 100 mg/kg/day dose group. Moreover, treatment by FUC alone at 100 mg/kg/day was not associated with significant negative alterations in the assessed biochemical parameters, highlighting its safety at this dose. In conclusion, treatment by FUC significantly ameliorated organ injury, induced by MC-LR in mouse hepatic, renal, and cardiac tissues.


Assuntos
Antioxidantes/farmacologia , Carcinógenos/toxicidade , Microcistinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/farmacologia , Animais , Glutationa , Fígado , Toxinas Marinhas , Camundongos
16.
Sci Total Environ ; 707: 135996, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31865090

RESUMO

Heat stress (HS) has adverse effects on the body: it decreases body weight, feed efficiency, feed intake, carcass quality, and nutrient digestibility. Chromium (Cr) can prevent lipid peroxidation induced by HS through its strong antioxidant activities, especially when it is added to the poultry diet. It improves the action of insulin and nutrient metabolism (of lipids, proteins, nucleic acid, and carbohydrates) through activation of enzymes associated with such pathways. The results of the studies on Cr added to diets with concentrations of 0.05 mg Cr/kg of Cr-methionine led to improved feed efficiency and DM intake by cows and Holstein dairy calves exposed to high environmental temperatures. Moreover, calves that received Cr at levels of 0.05 mg/kg of body weight tended to have higher serum concentrations of glucose and higher ratios of insulin to glucose. In heat-stressed pigs, Cr addition (200 ppb) increased blood neutrophils by about 37%. Several studies have asserted that Cr can inhibit inflammation in lactating cows by promoting the release of Hsp72, assisting production of IL-10 and inhibiting degradation of IκBα in HS conditions. In addition, Cr supplementation was observed to possibly have positive impacts on both cell-mediated and humeral immunity in heat-stressed buffalo calves. Studies over the last two decades have shown with certainty that chromium supplementation has an impact on many variables in chickens. Moreover, Cr is believed to increase insulin action in insulin-sensitive tissues (i.e., adipose and muscles), resulting in increased farm animal productivity through the improvement of feed intake, growth rate, carcass quality, reproductive parameters and immune functions.


Assuntos
Cromo/análise , Ração Animal , Animais , Galinhas , Dieta , Suplementos Nutricionais , Feminino , Lactação , Suínos
17.
Saudi J Biol Sci ; 26(2): 270-280, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31485165

RESUMO

OBJECTIVES: Nucleotide oligomerization domain 2 (NOD2) and myeloid differentiation protein 2 (MD-2) have crucial roles in the innate immune system. NOD2 is a member of the NOD-like receptor (NLR) family of pattern recognition receptors (PRRs), while MD-2 is a co-receptor for Toll-like receptor 4 (TLR4), which comprises another group of PRRs. Genetic variations in the NOD2 and MD-2 genes may be susceptibility factors to viral pathogens including hepatitis B virus (HBV). We investigated whether polymorphisms at NOD2 (rs2066845 and rs2066844) or at MD-2 (rs6472812 and rs11466004) were associated with susceptibility to HBV infection and advancement to related liver complications in a Saudi Arabian population. Methods: A total of 786 HBV-infected patients and 600 healthy uninfected controls were analyzed in the present study. HBV-infected patients were categorized into three groups based on the clinical stage of the infection: inactive HBV carriers, active HBV carriers, and patients with liver cirrhosis + hepatocellular carcinoma (HCC). Results: All four SNPs were significantly associated with susceptibility to HBV infection although none of the SNPs tested in NOD2 and MD-2 were significantly associated with persistence of HBV infection. We found that HBV-infected patients that were homozygous CC for rs2066845 in the NOD2 gene were at a significantly increased risk of progression to HBV-related liver complications (Odds Ratio = 7.443 and P = 0.044). Furthermore, haplotype analysis found that the rs2066844-rs2066845 C-G and T-G haplotypes at the NOD2 gene and four rs6472812-rs11466004 haplotypes (G-C, G-T, A-C, and A-T) at the MD-2 gene were significantly associated with HBV infection in the affected cohort compared to those found in our control group. Conclusion: We found that the single nucleotide polymorphisms rs2066844 and rs2066845 at NOD2 and rs6472812 and rs11466004 at MD-2 were associated with susceptibility to HBV infection in a Saudi population.

18.
Oxid Med Cell Longev ; 2019: 1309175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178949

RESUMO

Microcystin- (MC-) LR is the most frequent cyanotoxin produced by Microcystis aeruginosa cyanobacteria in the contaminated freshwater environment. MC represents a health hazard to humans and animals. Therefore, the present study was designed to evaluate the potential ameliorative effect of thymoquinone (TQ) and/or piperine (PP) against MC toxicity in mice. Fifty-six mice were randomly divided into seven experimental groups. Group I is the normal control that received distilled water for 21 days; Group II (TQ) was treated with TQ (10 mg/kg, i.p) for 21 days; Group III (PP) was treated with PP (25 mg/kg, i.p) for 21 days; Group IV (MC) was treated with MC (10 µg/kg, i.p) for 14 days and served as the toxic control; and Groups V, VI, and VII received TQ and/or PP 7 days prior to MC and continued for 14 days with MC. The results revealed that MC elicited hepatotoxicity and neurotoxicity which was evident due to the significant elevation of serum AST, ALT, γGT, ALP, LDH, IL-1ß, IL-6, and TNF-α levels. Furthermore, MC markedly increased MDA and NO contents along with reduction of GSH, SOD, CAT, and GSH-Px in liver and brain tissues. The electron transport chain may be a possible target for MC. TQ and/or PP ameliorated the MC-mediated oxidative damage in the liver and brain which might be attributed to their antioxidant properties. However, the concurrent treatment of TQ and PP showed the best regimen as a result of the PP-enhanced bioavailability of TQ.


Assuntos
Alcaloides/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Benzodioxóis/uso terapêutico , Benzoquinonas/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Alcaloides/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes , Benzodioxóis/farmacologia , Benzoquinonas/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Masculino , Camundongos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia
19.
Environ Sci Pollut Res Int ; 26(15): 15248-15254, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30929167

RESUMO

Nephrotoxicity is a common adverse effect of treatment with cisplatin (CDDP). This study was performed to evaluate the antioxidant and nephroprotective efficacy of ceftriaxone (CTX) and vitamin E (Vit.E), alone and in combination against CDDP-induced acute renal injury. Fifty-six male albino rats were equally divided into seven groups, receiving (I) normal saline, (II) CTX (100 mg/kg, intraperitoneal [i.p] injection), (III) Vit.E (100 mg/kg orally), (IV) CDDP (5 mg/kg i.p injection), (V) CDDP plus CTX, (VI) CDDP plus Vit.E, and (VII) CDDP plus CTX in combination with Vit.E. All treatments were administered daily for 10 days except CDDP, which was given as a single dose at the sixth day of the study. Compared to normal control rats, CDDP-injected rats showed significantly (p < 0.05) higher serum levels of renal injury biomarkers (uric acid, urea, and creatinine) and tumor necrosis factor-α (TNF-α), as well as increased renal tissue concentrations of malondialdehyde, nitric oxide, and TNF-α. Moreover, CDDP administration was associated with significantly lower (p < 0.05) renal tissue levels of reduced glutathione and activities of endogenous antioxidant enzymes (glutathione peroxidase, superoxide dismutase, and catalase) and total antioxidant capacity. All these alterations were significantly ameliorated in CDDP-injected rats, receiving CTX and/or Vit.E, compared to rats receiving CDDP alone. Interestingly, the antioxidant and anti-inflammatory effects were more marked in the CTX-Vit.E combination group, compared to groups receiving either drug alone. In conclusion, CTX and Vit.E (especially in combination) could counteract the nephrotoxic effect of CDDP, probably through their antioxidant activities.


Assuntos
Antioxidantes/farmacologia , Catalase/química , Ceftriaxona/farmacologia , Cisplatino/toxicidade , Glutationa Peroxidase/química , Glutationa/farmacologia , Rim/efeitos dos fármacos , Malondialdeído/farmacologia , Óxido Nítrico/farmacologia , Superóxido Dismutase/química , Ureia/sangue , Vitamina E/farmacologia , Animais , Creatinina/sangue , Glutationa/química , Injeções Intraperitoneais , Masculino , Malondialdeído/química , Ratos
20.
Onco Targets Ther ; 12: 21-30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30588027

RESUMO

INTRODUCTION: The communication between a substance and a cell may depend on whether the cell is normal or pathological. The disease cells and drug interaction may occasionally overcome beneficial action of the drug; subsequently, it is important to investigate the effect of the drug in both the normal and target cells. This study aimed to evaluate the methotrexate (MTX) antiproliferative effect and explore the mechanistic approach to investigate the cell death index in SKOV-3 ovarian cells during treatment with MTX. METHODS: In vitro studies of SKOV-3 cells were examined by tetrazolium assay after exposure to various concentrations of MTX. Moreover, reactive oxygen species (ROS) generation, mitochondrial membrane potential, DNA damage, and AO/EtBr staining morphological analysis of necrotic/apoptotic cells were detected; cellular impairment in mitochondria and DNA was confirmed by JC-1 mitotracker/DAPI, respectively, and cell death pathway markers; bax/bcl-2 were analyzed. RESULTS: A dose-dependent antiproliferative effect of MTX treatment was observed in SKOV-3 cells; the prominent inhibitory concentration was 40 µM of MTX (P<0.01). The growth inhibition rates of the cancer cells reached 24.07% in MTX. The MTX showed increase in ROS generation and mitochondrial depolarization, and DNA integrity cells collectively advocated the apoptotic cell death at higher concentration. In addition, the results of reverse transcription polymerase chain reaction also supported the apoptosis by upregulating the bax and downregulating the bcl-2 (P<0.01). Thus the MTX moderately provokes apoptosis. CONCLUSION: Our findings suggest that MTX acts on SKOV-3 cancer cells by increasing intracellular ROS levels, leading to DNA damage and altering the MMP along with apoptotic gene upregulation. This mechanism may provide new therapeutic targets to improve tumor treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...