Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Prosthet Dent ; 91(4): 319-25, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15116032

RESUMO

STATEMENT OF PROBLEM: Abutment and prosthetic loosening of single and multiple screw-retained, implant-supported fixed partial dentures is a concern. PURPOSE: The purpose of this study was to investigate stress distribution of preloaded dental implant screws in 3 implant-to-abutment joint systems under simulated occlusal forces. MATERIAL AND METHODS: Three abutment-to-implant joint systems were simulated by using the 3-dimensional finite element analysis method: (1) Branemark external hexagonal screw-retained abutment, (2) ITI 8-degree Morse tapered cemented abutment, and (3) ITI 8-degree Morse tapered plus internal octagonal screw-retained abutment. A thermal load and contact analysis method were used to simulate the preload resulting from the manufacturers' recommended torques in implant screw joint assemblies. The simulated preloaded implants were then loaded with 3 simulated static occlusal loads (10 N; horizontal, 35 N; vertical, 70 N; oblique) on the crown position onto the implant complex. RESULTS: Numeric and graphical results demonstrated that the stresses increased in both the abutment and prosthetic screws in the finite element models after simulated horizontal loading. However, when vertical and oblique static loads were applied, stresses decreased in the external hexagonal and internal octagonal plus 8-degree Morse tapered abutment and prosthetic screws with the exception of the prosthetic screw of ITI abutment after 70-N oblique loading. Stresses increased in the ITI 8-degree Morse tapered cemented abutment after both vertical and oblique loads. CONCLUSION: Although an increase or decrease was demonstrated for the maximum calculated stress values in preloaded screws after occlusal loads, these maximum stress values were well below the yield stress of both abutment and prosthetic screws of 2 implant systems tested. The results imply that the 3 implant-to-abutment joint systems tested may not fail under the simulated occlusal forces.


Assuntos
Força de Mordida , Implantes Dentários , Retenção em Prótese Dentária/instrumentação , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Simulação por Computador , Dente Suporte , Retenção em Prótese Dentária/métodos , Falha de Restauração Dentária , Análise do Estresse Dentário/métodos , Prótese Parcial Fixa , Análise de Elementos Finitos , Modelos Teóricos , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...