Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 3): 134451, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102907

RESUMO

The research interest in sustainable and eco-friendly materials based on natural sources has increased dramatically due to their recyclability, biodegradability, compatibility, and nontoxic behavior. Recently, nanocellulose-based green composites are under extensive exploration and have gained popularity among researchers owing to their lightweight, lost cost, low density, excellent mechanical and physical characteristics. This review provides a comprehensive overview of the recent advancements in the extraction, modification, and application of bamboo nanocellulose as a high-performance bioadsorbent. Bamboo, a rapidly renewable resource, offers an eco-friendly alternative to traditional materials due to its abundant availability and unique structural properties. Significantly, bamboo comprises a considerable amount of cellulose, approximately 40 % to 50%, rendering it a valuable source of cellulose fiber for the fabrication of cellulose nanocrystals. The review highlights different various modification techniques which enhance the adsorption capacities and selectivity of bamboo nanocellulose. Furthermore, the integration of bamboo nanocellulose into novel composite materials and its performance in removing contaminants such as heavy metals, dyes, and organic pollutants from wastewater are critically analyzed. Emphasis is placed on the mechanisms of adsorption, regeneration potential, and the economic and environmental benefits of using bamboo-based bioadsorbents. The findings underscore the potential of bamboo nanocellulose to play a pivotal role in developing sustainable wastewater treatment technologies, offering a promising pathway towards cleaner water and a greener future.


Assuntos
Celulose , Águas Residuárias , Purificação da Água , Celulose/química , Águas Residuárias/química , Purificação da Água/métodos , Adsorção , Sasa/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Nanopartículas/química , Biodegradação Ambiental
2.
Int J Biol Macromol ; 277(Pt 1): 134165, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059537

RESUMO

In recent years, there has been an increase in research devoted to the advancement of cellulose and nanocellulose-based materials, which are advantageous due to their renewable nature, strength, rigidity, and environmental friendliness. This exploration complies with the fundamental tenets of environmental stewardship and sustainability. An area of industrial biotechnology where cellulosic agricultural residues have the potential to be economically utilized is through the conversion of such residues; sugarcane bagasse is currently leading this charge. SCB, a plentiful fibrous byproduct produced during the sugarcane industry's operations, has historically been utilized in various sectors, including producing paper, animal feed, enzymes, biofuel conversion, and biomedical applications. Significantly, SCB comprises a considerable amount of cellulose, approximately 40 % to 50 %, rendering it a valuable source of cellulose fibre for fabricating cellulose nanocrystals. This review sheds light on the significant advances in surface modification techniques, encompassing physical, chemical, and biological treatments, that enhance sugarcane bagasse fibres' adsorption capacity and selectivity. Furthermore, the paper investigates the specific advancements related to the augmentation of sugarcane bagasse fibres' efficacy in adsorbing a wide range of pollutants. These pollutants span a spectrum that includes heavy metals, dyes, organic pollutants, and emerging contaminants. The discussion provides a comprehensive overview of the targeted removal processes facilitated by applying modified fibres. The unique structural and chemical properties inherent in sugarcane bagasse fibres and their widespread availability position them as highly suitable adsorbents for various pollutants. This convergence of attributes underscores the potential of sugarcane bagasse fibres in addressing environmental challenges and promoting sustainable solutions across multiple industries.


Assuntos
Celulose , Saccharum , Saccharum/química , Celulose/química , Adsorção , Biotecnologia/métodos
3.
Materials (Basel) ; 15(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36234333

RESUMO

The rapid use of petroleum resources coupled with increased awareness of global environmental problems associated with the use of petroleum-based plastics is a major driving force in the acceptance of natural fibers and biopolymers as green materials. Because of their environmentally friendly and sustainable nature, natural fibers and biopolymers have gained significant attention from scientists and industries. Cassava (Manihot esculenta) is a plant that has various purposes for use. It is the primary source of food in many countries and is also used in the production of biocomposites, biopolymers, and biofibers. Starch from cassava can be plasticized, reinforced with fibers, or blended with other polymers to strengthen their properties. Besides that, it is currently used as a raw material for bioethanol and renewable energy production. This comprehensive review paper explains the latest developments in bioethanol compounds from cassava and gives a detailed report on macro and nano-sized cassava fibers and starch, and their fabrication as blend polymers, biocomposites, and hybrid composites. The review also highlights the potential utilization of cassava fibers and biopolymers for industrial applications such as food, bioenergy, packaging, automotive, and others.

4.
Polymers (Basel) ; 13(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34685246

RESUMO

This work aims to develop cornstarch (CS) based films using fructose (F), glycerol (G), and their combination (FG) as plasticizers with different ratios for food packaging applications. The findings showed that F-plasticized film had the lowest moisture content, highest crystallinity among all films, and exhibited the highest tensile strength and thermostability. In contrast, G-plasticized films showed the lowest density and water absorption with less crystallinity compared to the control and the other plasticized film. In addition, SEM results indicated that FG-plasticized films had a relatively smoother and more coherent surface among the tested films. The findings have also shown that varying the concentration of the plasticizers significantly affected the different properties of the plasticized films. Therefore, the selection of a suitable plasticizer at an appropriate concentration may significantly optimize film properties to promote the utilization of CS films for food packaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA