Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37627946

RESUMO

Deep learning is playing a major role in identifying complicated structure, and it outperforms in term of training and classification tasks in comparison to traditional algorithms. In this work, a local cloud-based solution is developed for classification of Alzheimer's disease (AD) as MRI scans as input modality. The multi-classification is used for AD variety and is classified into four stages. In order to leverage the capabilities of the pre-trained GoogLeNet model, transfer learning is employed. The GoogLeNet model, which is pre-trained for image classification tasks, is fine-tuned for the specific purpose of multi-class AD classification. Through this process, a better accuracy of 98% is achieved. As a result, a local cloud web application for Alzheimer's prediction is developed using the proposed architectures of GoogLeNet. This application enables doctors to remotely check for the presence of AD in patients.

2.
Sensors (Basel) ; 23(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37300076

RESUMO

The emergence of the Internet of Things (IoT) and its subsequent evolution into the Internet of Everything (IoE) is a result of the rapid growth of information and communication technologies (ICT). However, implementing these technologies comes with certain obstacles, such as the limited availability of energy resources and processing power. Consequently, there is a need for energy-efficient and intelligent load-balancing models, particularly in healthcare, where real-time applications generate large volumes of data. This paper proposes a novel, energy-aware artificial intelligence (AI)-based load balancing model that employs the Chaotic Horse Ride Optimization Algorithm (CHROA) and big data analytics (BDA) for cloud-enabled IoT environments. The CHROA technique enhances the optimization capacity of the Horse Ride Optimization Algorithm (HROA) using chaotic principles. The proposed CHROA model balances the load, optimizes available energy resources using AI techniques, and is evaluated using various metrics. Experimental results show that the CHROA model outperforms existing models. For instance, while the Artificial Bee Colony (ABC), Gravitational Search Algorithm (GSA), and Whale Defense Algorithm with Firefly Algorithm (WD-FA) techniques attain average throughputs of 58.247 Kbps, 59.957 Kbps, and 60.819 Kbps, respectively, the CHROA model achieves an average throughput of 70.122 Kbps. The proposed CHROA-based model presents an innovative approach to intelligent load balancing and energy optimization in cloud-enabled IoT environments. The results highlight its potential to address critical challenges and contribute to developing efficient and sustainable IoT/IoE solutions.


Assuntos
Algoritmos , Inteligência Artificial , Animais , Cavalos , Inteligência , Conscientização , Internet
3.
Healthcare (Basel) ; 10(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628045

RESUMO

The COVID-19 pandemic has been a disastrous event that has elevated several psychological issues such as depression given abrupt social changes and lack of employment. At the same time, social scientists and psychologists have gained significant interest in understanding the way people express emotions and sentiments at the time of pandemics. During the rise in COVID-19 cases with stricter lockdowns, people expressed their sentiments on social media. This offers a deep understanding of human psychology during catastrophic events. By exploiting user-generated content on social media such as Twitter, people's thoughts and sentiments can be examined, which aids in introducing health intervention policies and awareness campaigns. The recent developments of natural language processing (NLP) and deep learning (DL) models have exposed noteworthy performance in sentiment analysis. With this in mind, this paper presents a new sunflower optimization with deep-learning-driven sentiment analysis and classification (SFODLD-SAC) on COVID-19 tweets. The presented SFODLD-SAC model focuses on the identification of people's sentiments during the COVID-19 pandemic. To accomplish this, the SFODLD-SAC model initially preprocesses the tweets in distinct ways such as stemming, removal of stopwords, usernames, link punctuations, and numerals. In addition, the TF-IDF model is applied for the useful extraction of features from the preprocessed data. Moreover, the cascaded recurrent neural network (CRNN) model is employed to analyze and classify sentiments. Finally, the SFO algorithm is utilized to optimally adjust the hyperparameters involved in the CRNN model. The design of the SFODLD-SAC technique with the inclusion of an SFO algorithm-based hyperparameter optimizer for analyzing people's sentiments on COVID-19 shows the novelty of this study. The simulation analysis of the SFODLD-SAC model is performed using a benchmark dataset from the Kaggle repository. Extensive, comparative results report the promising performance of the SFODLD-SAC model over recent state-of-the-art models with maximum accuracy of 99.65%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...