Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687001

RESUMO

Nairoviridae is a family for negative-sense RNA viruses with genomes of about 17.2-21.1 kb. These viruses are maintained in and/or transmitted by arthropods among birds, reptiles and mammals. Norwaviruses and orthonairoviruses can cause febrile illness in humans. Several orthonairoviruses can infect mammals, causing mild, severe and sometimes, fatal diseases. Nairovirids produce enveloped virions containing two or three single-stranded RNA segments with open reading frames that encode a nucleoprotein (N), sometimes a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Nairoviridae, which is available at www.ictv.global/report/nairoviridae.


Assuntos
Genoma Viral , Animais , Humanos , Fases de Leitura Aberta , Proteínas Virais/genética , Nairovirus/genética , Nairovirus/classificação , Nairovirus/isolamento & purificação , RNA Viral/genética , Filogenia , Vírion/ultraestrutura , RNA Polimerase Dependente de RNA/genética
2.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37622664

RESUMO

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Vírus de RNA de Sentido Negativo , Vírus de RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
3.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555727

RESUMO

The increasing frequency of isolation of methicillin-resistant Staphylococcus aureus (MRSA) limits the chances for the effective antibacterial therapy of staphylococcal diseases and results in the development of persistent infection such as bacteremia and osteomyelitis. The aim of this study was to identify features of the MRSAST239 0943-1505-2016 (SA943) genome that contribute to the formation of both acute and chronic musculoskeletal infections. The analysis was performed using comparative genomics data of the dominant epidemic S. aureus lineages, namely ST1, ST8, ST30, ST36, and ST239. The SA943 genome encodes proteins that provide resistance to the host's immune system, suppress immunological memory, and form biofilms. The molecular mechanisms of adaptation responsible for the development of persistent infection were as follows: amino acid substitution in PBP2 and PBP2a, providing resistance to ceftaroline; loss of a large part of prophage DNA and restoration of the nucleotide sequence of beta-hemolysin, that greatly facilitates the escape of phagocytosed bacteria from the phagosome and formation of biofilms; dysfunction of the AgrA system due to the presence of psm-mec and several amino acid substitutions in the AgrC; partial deletion of the nucleotide sequence in genomic island vSAß resulting in the loss of two proteases of Spl-operon; and deletion of SD repeats in the SdrE amino acid sequence.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Infecção Persistente , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana
4.
Arch Virol ; 167(12): 2857-2906, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36437428

RESUMO

In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais , Vírus , Humanos , Mononegavirais/genética , Filogenia
5.
J Gen Virol ; 103(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35412967

RESUMO

Crimean-Congo haemorrhagic fever virus (CCHFV) is the medically most important member of the rapidly expanding bunyaviral family Nairoviridae. Traditionally, CCHFV isolates have been assigned to six distinct genotypes. Here, the International Committee on Taxonomy of Viruses (ICTV) Nairoviridae Study Group outlines the reasons for the recent decision to re-classify genogroup VI (aka Europe-2 or AP-92-like) as a distinct virus, Aigai virus (AIGV).


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Genótipo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos
6.
Nature ; 603(7903): 913-918, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114688

RESUMO

Two different sarbecoviruses have caused major human outbreaks in the past two decades1,2. Both of these sarbecoviruses, SARS-CoV-1 and SARS-CoV-2, engage ACE2 through the spike receptor-binding domain2-6. However, binding to ACE2 orthologues of humans, bats and other species has been observed only sporadically among the broader diversity of bat sarbecoviruses7-11. Here we use high-throughput assays12 to trace the evolutionary history of ACE2 binding across a diverse range of sarbecoviruses and ACE2 orthologues. We find that ACE2 binding is an ancestral trait of sarbecovirus receptor-binding domains that has subsequently been lost in some clades. Furthermore, we reveal that bat sarbecoviruses from outside Asia can bind to ACE2. Moreover, ACE2 binding is highly evolvable-for many sarbecovirus receptor-binding domains, there are single amino-acid mutations that enable binding to new ACE2 orthologues. However, the effects of individual mutations can differ considerably between viruses, as shown by the N501Y mutation, which enhances the human ACE2-binding affinity of several SARS-CoV-2 variants of concern12 but substantially decreases it for SARS-CoV-1. Our results point to the deep ancestral origin and evolutionary plasticity of ACE2 binding, broadening the range of sarbecoviruses that should be considered to have spillover potential.


Assuntos
Enzima de Conversão de Angiotensina 2 , Evolução Molecular , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sítios de Ligação , COVID-19/virologia , Quirópteros/virologia , Humanos , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Viruses ; 14(1)2022 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062318

RESUMO

We found and genetically described two novel SARS-like coronaviruses in feces and oral swabs of the greater (R. ferrumequinum) and the lesser (R. hipposideros) horseshoe bats in southern regions of Russia. The viruses, named Khosta-1 and Khosta-2, together with related viruses from Bulgaria and Kenya, form a separate phylogenetic lineage. We found evidence of recombination events in the evolutionary history of Khosta-1, which involved the acquisition of the structural proteins S, E, and M, as well as the nonstructural genes ORF3, ORF6, ORF7a, and ORF7b, from a virus that is related to the Kenyan isolate BtKY72. The examination of bats by RT-PCR revealed that 62.5% of the greater horseshoe bats in one of the caves were positive for Khosta-1 virus, while its overall prevalence was 14%. The prevalence of Khosta-2 was 1.75%. Our results show that SARS-like coronaviruses circulate in horseshoe bats in the region, and we provide new data on their genetic diversity.


Assuntos
Quirópteros/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Animais , Sequência de Bases , Quirópteros/classificação , Evolução Molecular , Fezes/virologia , Metagenômica , Boca/virologia , Filogenia , Prevalência , Recombinação Genética , Federação Russa , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais/genética
9.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34463877

RESUMO

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais , Vírus , Humanos
10.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32888050

RESUMO

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais/classificação , Terminologia como Assunto
11.
Arch Virol ; 164(7): 1949-1965, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31065850

RESUMO

In February 2019, following the annual taxon ratification vote, the order Bunyavirales was amended by creation of two new families, four new subfamilies, 11 new genera and 77 new species, merging of two species, and deletion of one species. This article presents the updated taxonomy of the order Bunyavirales now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Bunyaviridae/classificação , Bunyaviridae/genética , Genoma Viral/genética , Filogenia , RNA Viral/genética
12.
Viruses ; 11(5)2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126128

RESUMO

In recent years, it has become evident that a generational gap has developed in the community of arbovirus research. This apparent gap is due to the dis-investment of training for the next generation of arbovirologists, which threatens to derail the rich history of virus discovery, field epidemiology, and understanding of the richness of diversity that surrounds us. On the other hand, new technologies have resulted in an explosion of virus discovery that is constantly redefining the virosphere and the evolutionary relationships between viruses. This paradox presents new challenges that may have immediate and disastrous consequences for public health when yet to be discovered arboviruses emerge. In this review we endeavor to bridge this gap by providing a historical context for the work being conducted today and provide continuity between the generations. To this end, we will provide a narrative of the thrill of scientific discovery and excitement and the challenges lying ahead.


Assuntos
Infecções por Arbovirus/virologia , Arbovírus/fisiologia , Animais , Infecções por Arbovirus/epidemiologia , Infecções por Arbovirus/história , Arbovírus/isolamento & purificação , Arbovírus/ultraestrutura , Genoma Viral , Genômica/métodos , Saúde Global , História do Século XX , História do Século XXI , Humanos , Pesquisa/história
13.
Arch Virol ; 164(3): 927-941, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30663021

RESUMO

In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Arenaviridae/classificação , Animais , Arenaviridae/genética , Arenaviridae/isolamento & purificação , Infecções por Arenaviridae/virologia , Humanos , Filogenia
14.
Artigo em Inglês | MEDLINE | ID: mdl-30533699

RESUMO

We present here draft genome sequences of five Staphylococcus aureus strains obtained from children suffering from atopic dermatitis. The strains were determined to be of five different sequence types (sequence type 1 [ST1], ST7, ST8, ST15, and ST101) and carried a unique combination of superantigen-like protein (SSL) and serine protease genes.

15.
Arch Virol ; 163(8): 2295-2310, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29680923

RESUMO

In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.


Assuntos
Arenaviridae/classificação , Animais , Arenaviridae/genética , Arenaviridae/isolamento & purificação , Infecções por Arenaviridae/veterinária , Infecções por Arenaviridae/virologia , Humanos , Filogenia
16.
Arch Virol ; 163(3): 755-759, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29129019

RESUMO

A genome of bank vole virus (BaVV), isolated from kidney tissues of bank voles (Myodes glareolus) in Russia in 1973, was sequenced. The genomic organization of BaVV (3'-N-P/V/C-M-F-G-L-5', 16,992 nt in length; GenBank accession number MF943130) is most similar to that of Mossman virus (MoV) and Nariva virus (NarPV), two ungrouped paramyxoviruses isolated from rodents in Australia and Trinidad, respectively. The proteins of BaVV have the highest level of sequence identity (ranging from 23-28% for G protein to 66-73% for M protein) to proteins of MoV and NarPV. The results of genetic and phylogenetic analysis suggest that BaVV represents a new species and, together with MoV and NarPV, belongs to a new, yet not established genus of the family Paramyxoviridae.


Assuntos
Arvicolinae/virologia , Genoma Viral , Infecções por Paramyxoviridae/veterinária , Paramyxoviridae/genética , RNA Viral/genética , Doenças dos Roedores/epidemiologia , Animais , Sequência de Bases , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Rim/virologia , Paramyxoviridae/classificação , Paramyxoviridae/isolamento & purificação , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Filogenia , Doenças dos Roedores/virologia , Federação Russa/epidemiologia , Análise de Sequência de RNA , Homologia de Sequência do Ácido Nucleico
17.
Virus Res ; 244: 164-172, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113825

RESUMO

In 2007, numerous hamadryas baboons (Papio hamadryas) died suddenly in an aviary of a primate institute in Sochi, Russia, in the absence of prior clinical signs. Necropsies were suggestive of encephalomyocarditis virus infection, but RT-PCR assays with commonly used primers were negative. Here we report the histopathological results obtained during necropsies and the isolation and genomic characterization of a divergent strain of encephalomyocarditis virus 1 (EMCV-1) from heart tissue of one of the succumbed hamadryas baboons. Phylogenetic analysis indicates that the isolated virus belongs to the newly proposed EMCV-1 lineage G, which clusters alongside lineage C ("Mengo virus"). This study is the first report describing a lineage G strain of EMCV-1 as the etiological agent of a lethal disease outbreak among captive nonhuman primates in Europe.


Assuntos
Infecções por Cardiovirus/epidemiologia , Surtos de Doenças , Vírus da Encefalomiocardite/genética , Genoma Viral , Papio hamadryas/virologia , RNA Viral/genética , Sequência de Aminoácidos , Animais , Animais de Zoológico , Autopsia , Infecções por Cardiovirus/mortalidade , Infecções por Cardiovirus/patologia , Infecções por Cardiovirus/virologia , DNA Complementar/química , DNA Complementar/genética , Vírus da Encefalomiocardite/classificação , Vírus da Encefalomiocardite/isolamento & purificação , Vírus da Encefalomiocardite/patogenicidade , Coração/virologia , Filogenia , Federação Russa/epidemiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
18.
Genome Announc ; 5(40)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983005

RESUMO

The bunyaviral monogeneric family Nairoviridae currently includes 12 species for 35 distinct viruses. Here, we present the complete genome coding sequences of an additional seven nairoviruses. Five of them can be assigned to established species, whereas two of them (Artashat and Chim viruses) ought to be assigned to two novel species.

19.
Arch Virol ; 161(3): 755-68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26608064

RESUMO

The family Arteriviridae presently includes a single genus Arterivirus. This genus includes four species as the taxonomic homes for equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), porcine respiratory and reproductive syndrome virus (PRRSV), and simian hemorrhagic fever virus (SHFV), respectively. A revision of this classification is urgently needed to accommodate the recent description of eleven highly divergent simian arteriviruses in diverse African nonhuman primates, one novel arterivirus in an African forest giant pouched rat, and a novel arterivirus in common brushtails in New Zealand. In addition, the current arterivirus nomenclature is not in accordance with the most recent version of the International Code of Virus Classification and Nomenclature. Here we outline an updated, amended, and improved arterivirus taxonomy based on current data. Taxon-specific sequence cut-offs are established relying on a newly established open reading frame 1b phylogeny and pairwise sequence comparison (PASC) of coding-complete arterivirus genomes. As a result, the current genus Arterivirus is replaced by five genera: Equartevirus (for EAV), Rodartevirus (LDV + PRRSV), Simartevirus (SHFV + simian arteriviruses), Nesartevirus (for the arterivirus from forest giant pouched rats), and Dipartevirus (common brushtail arterivirus). The current species Porcine reproductive and respiratory syndrome virus is divided into two species to accommodate the clear divergence of the European and American "types" of PRRSV, both of which now receive virus status. The current species Simian hemorrhagic fever virus is divided into nine species to accommodate the twelve known simian arteriviruses. Non-Latinized binomial species names are introduced to replace all current species names to clearly differentiate them from virus names, which remain largely unchanged.


Assuntos
Arteriviridae/classificação , Arteriviridae/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Arteriviridae/genética , Análise por Conglomerados , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Homologia de Sequência , Terminologia como Assunto
20.
Viruses ; 7(11): 5987-6008, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26610546

RESUMO

The family Bunyaviridae has more than 530 members that are distributed among five genera or remain to be classified. The genus Orthobunyavirus is the most diverse bunyaviral genus with more than 220 viruses that have been assigned to more than 18 serogroups based on serological cross-reactions and limited molecular-biological characterization. Sequence information for all three orthobunyaviral genome segments is only available for viruses belonging to the Bunyamwera, Bwamba/Pongola, California encephalitis, Gamboa, Group C, Mapputta, Nyando, and Simbu serogroups. Here we present coding-complete sequences for all three genome segments of 15 orthobunyaviruses belonging to the Anopheles A, Capim, Guamá, Kongool, Tete, and Turlock serogroups, and of two unclassified bunyaviruses previously not known to be orthobunyaviruses (Tataguine and Witwatersrand viruses). Using those sequence data, we established the most comprehensive phylogeny of the Orthobunyavirus genus to date, now covering 15 serogroups. Our results emphasize the high genetic diversity of orthobunyaviruses and reveal that the presence of the small nonstructural protein (NSs)-encoding open reading frame is not as common in orthobunyavirus genomes as previously thought.


Assuntos
Variação Genética , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , Genoma Viral , RNA Viral/genética , Análise de Sequência de DNA , Sorogrupo , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...