Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169321, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38103607

RESUMO

Epiphytic and superficial sediment biofilm-dwelling microbial communities play a pivotal role in water quality regulation and biogeochemical cycling in shallow lakes. However, the interactions are far from clear between water physicochemical parameters and microbial community on aquatic plants and in surface sediments of lake in trophic agriculture area. This study employed Illumina sequencing, Partial Least Squares Path Modeling (PLS-PM), and physico-chemical analytical methods to explore the interactions between water quality and microbes (bacteria and eukaryotes) in three substrates of trophic shallow Lake Cyohoha North, Rwanda. The Lake Cyohoha was significantly polluted with total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (NO3-N), and ammonia nitrogen (NH3-N) in the wet season compared to the dry season. PLS-PM revealed a strong positive correlation (+0.9301) between land use types and physico-chemical variables in the rainy season. In three substrates of the trophic lake, Proteobacteria, Cyanobacteria, Firmicutes, and Actinobacteria were dominant phyla in the bacterial communities, and Rotifers, Platyhelminthes, Gastrotricha, and Ascomycota dominated in microeukaryotic communities. As revealed by null and neutral models, stochastic processes predominantly governed the assembly of bacterial and microeukaryotic communities in biofilms and surface sediments. Network analysis revealed that the microbial interconnections in Ceratophyllum demersum were more stable and complex compared to those in Eichhornia crassipes and sediments. Co-occurrence network analysis (|r| > 0.7, p < 0.05) revealed that there were complex interactions among physicochemical parameters and microbes in epiphytic and sediment biofilms, and many keystone microbes on three substrates played important role in nutrients removal, food web and microbial community stable. These findings emphasize that eutrophic water influence the structure, composition, and interactions of microbes in epiphytic and surface sediment biofilms, and provided new insights into the interconnections between water quality and microbial community in presentative substrates in tropical lacustrine ecosystems in agriculturally polluted areas. The study provides useful information for water quality protection and aquatic plants restoration for policy making and catchment management.


Assuntos
Cianobactérias , Microbiota , Lagos/microbiologia , Qualidade da Água , Biofilmes , Nitrogênio , Sedimentos Geológicos/microbiologia , China
2.
J Hazard Mater ; 436: 129066, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739691

RESUMO

In this study, Vallisneria natans plants were exposed to 5 and 20 nm of titanium dioxide nanoparticles (TiO2 NPs) anatase and 600-1000 nm of bulk at 5 and 20 mg/L for 30 days. SEM images and EDX spectra revealed that epiphytic biofilms were more prone to TiO2 NPs adhesion than bare plant leaves. TiO2 NPs injured plant leaf cells, ruptured epiphytic diatoms membranes and increased the ratio of free-living microbes. The TN, NH4⁺-N and NO3--N concentrations significantly decreased, respectively, by 44.9%, 33.6%, and 23.6% compared to bulk treatments after 30 days due to macrophyte damage and a decline in diversity of epiphytic bacterial community and abundance of nitrogen cycle bacteria. TiO2 NPs size-dependent decrease in bacterial relative abundance was detected, including phylum Cyanobacteria, Planctomycetes, and Verrucomicrobia. Although TiO2 NPs increased eukaryotic diversity and abundance, abundances of Bacillariophyceae and Vampyrellidae classes and Gastrotricha and Phragmoplastophyta phylum decreased significantly under TiO2 NPs exposure compared to bulk and control. TiO2 NPs reduced intensities of interaction relationships among epiphytic microbial genera. This study shed new light on the potential effects of TiO2 NPs toxicity toward aquatic plants and epiphytic microbial communities and its impacts on nitrogen species removal in wetlands.


Assuntos
Cianobactérias , Hydrocharitaceae , Nitrogênio/farmacologia , Titânio/toxicidade
3.
Environ Sci Pollut Res Int ; 28(21): 26500-26514, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33486685

RESUMO

Food nitrogen (N) and phosphorus (P) footprints are indicators for determining the losses of N and P over food production (FP) and food consumption (FC) chain. Yemen is an interesting case because, given the country's heavy dependence on food imports, food insecurity, and poverty, the N footprint (NF) and P footprint (PF) could affect its future development. However, NF and PF over time have not yet been studied in Yemen. Therefore, this is the first paper to compute the NF and PF in Arabian Peninsula (a case study from Yemen) by an adjusted model of N-Calculator, by computing virtual N (VNFs) and virtual P (VPFs) factors for main foodstuffs. The NF (kg N cap-1 year-1) and PF (kg P cap-1 year-1) elevated from 5.56 and 1.20 in the 1960s to 15.2 and 4.79 during 2011-2017, respectively, while the national NF (Gg [109 g] N year-1) and national PF (Gg P year-1) increased from 27.7 and 6.77 in the 1960s to 358 and 122 during 2011-2017, respectively. Cereal was the largest contributor to the NF and PF in Yemen over the past 57 years. FP contributes approximately 80% and 86% of the total NF and PF during 2011-2017. Therefore, if possible, the best way for consumers and farmers in Yemen to decrease NF and PF is to focus efforts on increasing FP and FC of foodstuffs with less VNFs and VPFs. The consumption of vegetable-fruit, legumes, starchy, eggs, poultry, and fish should be increased as their NF and PF are low. However, people in Yemen suffer from shortage of resources and lack of awareness, and thus they do not have the opportunity to choose foodstuffs that are low in NF and PF. Accordingly, policymakers should encourage integrated approaches that introduce powerful tools for controlling crop and livestock production in conjunction with enhancements in nutrient use efficiency.


Assuntos
Nitrogênio , Fósforo , Animais , Cadeia Alimentar , Humanos , Nitrogênio/análise , Pobreza , Iêmen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...