Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Life ; 17(3): 305-308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39044927

RESUMO

Second-generation tricyclic H1 antihistamine loratadine (LTD) has a high permeability, low water solubility, and an oral absorption rate dependent on the rate at which it dissolves in the gastrointestinal tract. One approach suggested for improving the drug's solubility and rate of dissolution is natural solid dispersion (NSD). The present study evaluated the use of hydrophilic natural polymers, sodium alginate (SA), hyaluronic acid (HA), and xyloglucan (XG), in natural solid dispersion to enhance LTD solubility and dissolution rate. A total of 12 formulations comprising varied drug-to-polymer ratios were produced and analyzed for percentage yield, water solubility, and in vitro dissolution rate. The solubility of LTD was improved in all formulations. Excellent results were achieved with NSD1 (LTD: SA 1:0.25), with a high yield (99%), superior solubility (0.187) compared to pure loratadine (0.0021), and a speedy dissolution rate (98%) within 30 minutes. These studies suggest natural polymers like SA, HA, and XG can considerably increase LTD solubility. When introduced into NSD, these polymers effectively augment LTD dissolving rates, presenting attractive prospects for better bioavailability and therapeutic efficacy.


Assuntos
Loratadina , Polímeros , Solubilidade , Loratadina/química , Loratadina/farmacologia , Polímeros/química
2.
J Adv Pharm Technol Res ; 14(2): 119-124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255866

RESUMO

The study's goal was to create an in situ intrarectal mucoadhesive gel of sumatriptan (SMT) combining mucoadhesive polymer (xyloglucan) and thermosensitive polymers (poloxamer 407 and poloxamer 188) to prolong rectal residence time for treatment of migraines. Nine SMT mucoadhesive rectal in situ gel (RIG) formulas were created by mixing poloxamer 407 (18%, 19%, or 20%) with poloxamer 188 (5%), a mucoadhesive polymer at various doses (0.1, 0.2, and 0.3) as well as SMT (25 mg/ml). The prepared suppositories underwent for mucoadhesive force, gelation temperature, and gelation time. When SMT and mucoadhesive polymer were added to the poloxamer mixture, the gelation temperature dropped; however, poloxamer 188 had the opposite effect. These polymers supported the prepared liquids' ability to adhere to mucous membranes and form a strong gel. The transition gelation temperature of the poloxamer solution rose as a result of the addition of poloxamer 188. The findings showed that the formula RIG5 which is composed of poloxamer 407 (19%), poloxamer 188 (5%), and xyloglucan (0.2%) had an ideal transition temperature of 36.33°C, gel strength of 44.66°C, mucoadhesive force of 6409°C, and in vitro drug release of 93.98% over an 8-hour period. In light of this, it can be said that SMT was successfully manufactured as RIG without causing any chemical reaction with its additives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...