Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(14)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797589

RESUMO

The growing demand for self-powered systems and the slow progress in energy storage devices have led to the emergence of piezoelectric materials as a promising solution for energy harvesting. This study aims to investigate the effects of chirality, length, and strain rate on the piezoelectric potential of boron nitride nanotubes (BNNTs) through molecular dynamics simulation. Accurate data and guidance are provided to explain the piezoelectricity of chiral nanotubes, as the piezoelectric potentials of these nanotubes have previously remained unclear. The present study focuses on calculating the effect of these parameters based on the atomic model. The observed results stem from the frequencies and internal deformations, as the axial frequencies and deformations exhibit more substantial modifications compared to transverse directions. The piezoelectricity was found to depend on chirality, with the order of BNNT piezoelectricity sufficiency being in the sequence of zigzag > chirality > armchair configurations. The length of the BNNTs was also found to influence piezoelectricity, while the strain rate had no effect. The results also indicate that BNNTs can generate power in the milliwatts range, which is adequate for low-power electronic devices and Internet of Things applications. This research provides valuable insights into the piezoelectricity of chiral nanotubes and offers guidance for designing efficient energy harvesting devices.

2.
Sci Rep ; 12(1): 19531, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376320

RESUMO

A van der Waals (vdW) heterostructure, can be used in efficient heat management, due to its promising anisotropic thermal transport feature, with high heat conductance in one direction and low conductance in the rest. A carbon nanotube (CNT) bundle, can be used as one of the most feasible vdW heterostructures in a wide range of nanoscale devices. However, detailed investigations of heat transport in CNT bundles are still lacking. In this paper, we study heat transport in different CNT bundles-homogeneous bundles consisting of the one CNT radius (curvature) and inhomogeneous bundles constructed from different CNTs with different curvatures. We also investigate the comparison between two possible thermostatting configurations: the two ends connected (TEC) case in which there is at least a direct covalently connected path between the hot and cold heat baths, and the one end connected (OEC) case in which the system can be divided at least into two parts, by a vdW interacting interface. Nonequilibrium molecular dynamics simulations have been carried out for a wide range of configurations and curvature differences. We find that, in homogeneous bundles, by increasing the number of outer CNTs, the heat conductance increases. In inhomogeneous bundles, the total heat flux shows dependence on the difference between the curvature of the core and outer CNTs. The less the difference between the curvature of the core and the outer CNTs, the more the thermal conductance in the system. By investigating the spectral heat conductance (SHC) in the system, we found that a larger curvature difference between the core and outer CNTs leads to a considerable decrease in the contribution of 0-10 THz phonons in the bundled zone. These results provide an insightful understanding of the heat transport mechanism in vdW nano-heterostructures, more important for designing nanoelectronic devices as well as systems in which asymmetry plays a significant role.

3.
Sci Rep ; 6: 21910, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26912386

RESUMO

The motion of a fullerene (C60) on 5 different types of graphyne is studied by all-atom molecular dynamics simulations and compared with former studies on the motion of C60 on graphene. The motion shows a diffusive behavior which consists of either a continuous motion or discrete movements between trapping sites depending on the type of the graphyne sheet. For graphyne-4 and graphyne-5, fullerenes could detach from the surface of the graphyne sheet at room temperature which was not reported for similar cases on graphene sheets. Collective motion of a group of fullerenes interacting with a graphyne studied and it is shown that fullerenes exhibit stable assemblies. Depending on the type of graphyne, these assemblies can have either single or double layers. The mobility of the assembled structures is also dependent on the type of the graphyne sheet. The observed properties of the motion suggests novel applications for the complexes of fullerene and monolayer graphynes.

4.
Colloids Surf B Biointerfaces ; 122: 324-331, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25064483

RESUMO

Reducing size of the particles to the nanoscale range gives them new physicochemical properties. Several experiments have shown cytotoxic effects for different kinds of engineered nanoparticles (ENP). In-vitro cell culture assays are widely utilized by researchers to evaluate cytotoxic effects of the ENPs. The present paper deals with the "In vitro Sedimentation, Diffusion and Dosimetry (ISDD)" model. This mathematical model uses an advection-diffusion equation with specific assumptions and coefficients to estimate the dose of the particles delivered to the cells monolayer in the culture medium. In the present work, utilizing the generalized integral transform technique (GITT), a semi-analytical solution is developed for the ISDD model. The parameters affecting the ISDD predictions are integrated into two dimensionless numbers, Pe and τ. The Pe number shows the ratio of the convective to the diffusive mass transport rates and τ is a dimensionless time parameter. The quality of the results for an extensive range of Pe and τ numbers is surveyed through application of the developed formula to two series of test cases. A comparison of the results with those obtained from numerical methods shows deviations in the numerical results at high Pe numbers. Applying the developed formula, ISDD predictions for a wide practical range of Pe and τ numbers are calculated and plotted in two- and three-dimensional plots. The curves and formula obtained in this study facilitate the achievement of ISDD predictions with higher accuracies and capabilities for verification of the results.


Assuntos
Modelos Teóricos , Difusão , Relação Dose-Resposta a Droga , Técnicas In Vitro , Nanopartículas
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 1): 021121, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22463167

RESUMO

Numerous experiments have indicated that the fracture front (in three dimensions) and crack lines (in two dimensions) in disordered solids and rocklike materials is rough. It has been argued that the roughness exponent ζ is universal. Using extensive simulations of a two-dimensional model, we provide strong evidence that if extended correlations and anisotropy-two features that are prevalent in many materials-are incorporated in the models that are used in the numerical simulation of crack propagation, then ζ will vary considerably with the extent of the correlations and anisotropy. The results are consistent with recent experiments that also indicate deviations of ζ from its supposedly universal value, as well as with the data from rock samples.


Assuntos
Força Compressiva , Dureza , Modelos Químicos , Modelos Moleculares , Simulação por Computador
6.
Phys Rev Lett ; 96(7): 075507, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16606109

RESUMO

Wave propagation in a heterogeneous medium, characterized by a distribution of local elastic moduli, is studied. Both acoustic and elastic waves are considered, as are spatially random and power-law correlated distributions of the elastic moduli with nondecaying correlations. Three models--a continuum scalar model, and two discrete models--are utilized. Numerical simulations indicate the existence, at all times, of the relation, alpha = H, where alpha is the roughness exponent of the wave front in the medium, and H is the Hurst exponent that characterizes the spatial correlations in the distribution of the local elastic moduli. Hence, a direct relation between the static morphology of an inhomogeneous correlated medium and its dynamical properties is established. In contrast, for a wave front in random media, alpha = 0 (logarithmic growth) at short times, followed by a crossover to the classical value, alpha = 1/2, at long times.

7.
Phys Rev Lett ; 94(16): 165505, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15904243

RESUMO

Using the Martin-Siggia-Rose method, we study propagation of acoustic waves in strongly heterogeneous media which are characterized by a broad distribution of the elastic constants. Gaussian-white distributed elastic constants, as well as those with long-range correlations with nondecaying power-law correlation functions, are considered. The study is motivated in part by a recent discovery that the elastic moduli of rock at large length scales may be characterized by long-range power-law correlation functions. Depending on the disorder, the renormalization group (RG) flows exhibit a transition to localized regime in any dimension. We have numerically checked the RG results using the transfer-matrix method and direct numerical simulations for one- and two-dimensional systems, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...