Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552049

RESUMO

Given the lack of advances in Oral Squamous Cell Carcinoma (OSCC) therapy in recent years, pharmacological strategies to block OSCC-related signaling pathways have gained prominence. The present study aimed to evaluate the therapeutic potential of Arsenic Trioxide (ATO) concerning its antitumoral effects and the inhibition of the Hedgehog (HH) pathway in OSCC. Initially, ATO cytotoxicity was assessed in a panel of cell lines. Cell viability, cell cycle, death patterns, and cell morphology were analyzed, as well as the effect of ATO on the expression of HH pathway components. After the cytotoxic assay, HSC3 cells were chosen for all in vitro assays. ATO increased apoptotic cell death and nuclear fragmentation in the sub-G1 cell cycle phase and promoted changes in cell morphology. In addition, the reduced expression of GLI1 indicated that ATO inhibits HH activity. The present study provides evidence of ATO as an effective cytotoxic drug for oral cancer treatment in vitro.

2.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899449

RESUMO

(1) Background: Activation of the PI3K-AKT pathway controls most hallmarks of cancer, and the hedgehog (HH) pathway has been associated with oral squamous cell carcinoma (OSCC) development and progression. We hypothesized that fibroblast-derived insulin-like growth factor-1 (IGF-1) acts in oral squamous cell carcinoma (OSCC) cells, leading to the non-canonical activation of the HH pathway, maintaining AKT activity and promoting tumor aggressiveness. (2) Methods: Primary fibroblasts (MF1) were genetically engineered for IGF-1 overexpression (MF1-IGF1) and CRISPR/Cas9-mediated IGF1R silencing was performed in SCC-4 cells. SCC-4 cells were co-cultured with fibroblasts or incubated with fibroblast conditioned medium (CM) or rIGF-1 for functional assays and the evaluation of AKT and HH pathways. (3) Results: Gene expression analysis confirmed IGF-1 overexpression in MF1-IGF1 and the absence of IGF-1 expression in SCC-4, while elevated IGF1R expression was detected. IGF1R silencing was associated with decreased survival of SCC-4 cells. Ihh was expressed in both MF1 and MF1-IGF1, and increased levels of GLI1 mRNA were observed in SCC-4 after stimulation with CM-MF1. Activation of both PI3K-AKT and the HH pathway (GLI1, Ihh and SMO) were identified in SCC-4 cells cultured in the presence of MF1-IGF1-CM. rIGF-1 promoted tumor cell proliferation, migration, invasion and tumorsphere formation, whereas CM-MF1 significantly stimulated angiogenesis. (4) Conclusions: IGF-1 exerts pro-tumorigenic effects by stimulating SCC-4 cell proliferation, migration, invasion and stemness. AKT and HH pathways were activated by IGF-1 in SCC-4, reinforcing its influence on the regulation of these signaling pathways.


Assuntos
Proteínas Hedgehog/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Neoplasias Bucais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
3.
Int J Mol Cell Med ; 9(1): 50-61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832484

RESUMO

The renin-angiotensin system (RAS) exerts profound physiological effects on blood pressure regulation and fluid homeostasis, mainly by modulating renal, cardiovascular, and central nervous systems. Angiotensin (Ang)-(1-7), an end-product of RAS, is recognized by its cardiovascular protective properties through stimulation of the Mas receptor, including vasodilation, anti-inflammatory, and antihypertensive actions, and consequently, counter-regulating the well-known Ang II-elicited actions. The overall hypothesis of this study is that Ang-(1-7) inhibits Ang II-induced ERK1/2 activation in vascular smooth muscle cells (VSMCs), via regulation of mitogen-activated protein phosphatase-1 (MKP-1) activity. Aortas from male Wistar rats were incubated with Ang-(1-7) or vehicle. Concentration-response curves to Ang II were performed in endothelium-denuded aortas, in the presence or absence of ERK1/2 (PD98059) inhibitor or Mas receptor (A-779) antagonist. Expression of proteins was assessed by western blot, and immunohistochemistry was conducted in VSMCs. Ang-(1-7) incubation decreased Ang II-induced contractile response in aortas, and this effect was not observed in the presence of PD98059 or A-779. Stimulation of VSMCs with Ang-(1-7) prevented Ang II-induced ERK1/2 phosphorylation, but not C-Raf-activation. Furthermore, Ang II decreased MKP-1 phosphorylation in VSMCs. Interestingly, simultaneous incubation of Ang-(1-7) with Ang II favored MKP-1 phosphorylation, negatively modulating ERK1/2 activation in VSMCs. The results suggest that Ang-(1-7) counter-regulates actions evoked by Ang II overproduction, as observed in cardiovascular diseases, mainly by modulating MKP-1 activity. This evidence suggests that the role of Ang-(1-7) in MKP-1-regulation represents a target for new therapeutic development.

4.
Stem Cell Res Ther ; 11(1): 154, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276654

RESUMO

BACKGROUND: Hepatocyte-like cells (iHEPs) generated by transcription factor-mediated direct reprogramming of somatic cells have been studied as potential cell sources for the development of novel therapies targeting liver diseases. The mechanisms involved in direct reprogramming, stability after long-term in vitro expansion, and safety profile of reprogrammed cells in different experimental models, however, still require further investigation. METHODS: iHEPs were generated by forced expression of Foxa2/Hnf4a in mouse mesenchymal stromal cells and characterized their phenotype stability by in vitro and in vivo analyses. RESULTS: The iHEPs expressed mixed hepatocyte and liver progenitor cell markers, were highly proliferative, and presented metabolic activities in functional assays. A progressive loss of hepatic phenotype, however, was observed after several passages, leading to an increase in alpha-SMA+ fibroblast-like cells, which could be distinguished and sorted from iHEPs by differential mitochondrial content. The resulting purified iHEPs proliferated, maintained liver progenitor cell markers, and, upon stimulation with lineage maturation media, increased expression of either biliary or hepatocyte markers. In vivo functionality was assessed in independent pre-clinical mouse models. Minimal engraftment was observed following transplantation in mice with acute acetaminophen-induced liver injury. In contrast, upon transplantation in a transgenic mouse model presenting host hepatocyte senescence, widespread engraftment and uncontrolled proliferation of iHEPs was observed, forming islands of epithelial-like cells, adipocyte-like cells, or cells presenting both morphologies. CONCLUSION: The results have significant implications for cell reprogramming, suggesting that iHEPs generated by Foxa2/Hnf4a expression have an unstable phenotype and depend on transgene expression for maintenance of hepatocyte-like characteristics, showing a tendency to return to the mesenchymal phenotype of origin and a compromised safety profile.


Assuntos
Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Reprogramação Celular , Hepatócitos , Fígado , Camundongos , Fenótipo
5.
Stem Cell Res ; 41: 101630, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31706097

RESUMO

Human-induced pluripotent stem cell (hiPSC) CBTCi001-A line was generated from a healthy 30-year old male dermal fibroblasts using non-integrative reprogramming method using episomal-based plasmids expressing OCT4, SOX2, KLF4, and MYCL. Characterization of CBTCi001-A was confirmed by the expression of typical markers of pluripotency and differentiation potential in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular/citologia , Derme/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Doadores de Tecidos , Adulto , Diferenciação Celular , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Reprodutibilidade dos Testes
6.
Stem Cell Res Ther ; 10(1): 146, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113444

RESUMO

BACKGROUND: Survival and therapeutic actions of bone marrow-derived mesenchymal stem cells (BMMSCs) can be limited by the hostile microenvironment present during acute spinal cord injury (SCI). Here, we investigated whether BMMSCs overexpressing insulin-like growth factor 1 (IGF-1), a cytokine involved in neural development and injury repair, improved the therapeutic effects of BMMSCs in SCI. METHODS: Using a SCI contusion model in C57Bl/6 mice, we transplanted IGF-1 overexpressing or wild-type BMMSCs into the lesion site following SCI and evaluated cell survival, proliferation, immunomodulation, oxidative stress, myelination, and functional outcomes. RESULTS: BMMSC-IGF1 transplantation was associated with increased cell survival and recruitment of endogenous neural progenitor cells compared to BMMSC- or saline-treated controls. Modulation of gene expression of pro- and anti-inflammatory mediators was observed after BMMSC-IGF1 and compared to saline- and BMMSC-treated mice. Treatment with BMMSC-IGF1 restored spinal cord redox homeostasis by upregulating antioxidant defense genes. BMMSC-IGF1 protected against SCI-induced myelin loss, showing more compact myelin 28 days after SCI. Functional analyses demonstrated significant gains in BMS score and gait analysis in BMMSC-IGF1, compared to BMMSC or saline treatment. CONCLUSIONS: Overexpression of IGF-1 in BMMSC resulted in increased cell survival, immunomodulation, myelination, and functional improvements, suggesting that IGF-1 facilitates the regenerative actions of BMMSC in acute SCI.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Neurais/transplante , Traumatismos da Medula Espinal/terapia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/genética , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Bainha de Mielina/genética , Bainha de Mielina/patologia , Células-Tronco Neurais/citologia , Recuperação de Função Fisiológica , Regeneração/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
7.
Am J Pathol ; 187(5): 1134-1146, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28322201

RESUMO

Chronic Chagas disease cardiomyopathy, caused by Trypanosoma cruzi infection, is a major cause of heart failure in Latin America. Galectin-3 (Gal-3) has been linked to cardiac remodeling and poor prognosis in heart failure of different etiologies. Herein, we investigated the involvement of Gal-3 in the disease pathogenesis and its role as a target for disease intervention. Gal-3 expression in mouse hearts was evaluated during T. cruzi infection by confocal microscopy and flow cytometry analysis, showing a high expression in macrophages, T cells, and fibroblasts. In vitro studies using Gal-3 knockdown in cardiac fibroblasts demonstrated that Gal-3 regulates cell survival, proliferation, and type I collagen synthesis. In vivo blockade of Gal-3 with N-acetyl-d-lactosamine in T. cruzi-infected mice led to a significant reduction of cardiac fibrosis and inflammation in the heart. Moreover, a modulation in the expression of proinflammatory genes in the heart was observed. Finally, histological analysis in human heart samples obtained from subjects with Chagas disease who underwent heart transplantation showed the expression of Gal-3 in areas of inflammation, similar to the mouse model. Our results indicate that Gal-3 plays a role in the pathogenesis of experimental chronic Chagas disease, favoring inflammation and fibrogenesis. Moreover, by demonstrating Gal-3 expression in human hearts, our finding reinforces that this protein could be a novel target for drug development for Chagas cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Galectina 3/metabolismo , Miocardite/metabolismo , Miocárdio/patologia , Acetilgalactosamina/farmacologia , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Doença Crônica , Colágeno Tipo I/biossíntese , Fibrose/etiologia , Fibrose/metabolismo , Galectina 3/antagonistas & inibidores , Transplante de Coração , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/etiologia , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Linfócitos T/metabolismo
8.
BMC Cardiovasc Disord ; 15: 162, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631050

RESUMO

BACKGROUND/OBJECTIVES: High fat diet (HFD) is a major contributor to the development of obesity and cardiovascular diseases due to the induction of cardiac structural and hemodynamic abnormalities. We used a model of diabetic cardiomyopathy in C57Bl/6 mice fed with a HFD to investigate the effects of granulocyte-colony stimulating factor (G-CSF), a cytokine known for its beneficial effects in the heart, on cardiac anatomical and functional abnormalities associated with obesity and type 2 diabetes. METHODS: Groups of C57Bl/6 mice were fed with standard diet (n = 8) or HFD (n = 16). After 36 weeks, HFD animals were divided into a group treated with G-CSF + standard diet (n = 8) and a vehicle control group + standard diet (n = 8). Cardiac structure and function were assessed by electrocardiography, echocardiography and treadmill tests, in addition to the evaluation of body weight, fasting glicemia, insulin and glucose tolerance at different time points. Histological analyses were performed in the heart tissue. RESULTS: HFD consumption induced metabolic alterations characteristic of type 2 diabetes and obesity, as well as cardiac fibrosis and reduced exercise capacity. Upon returning to a standard diet, obese mice body weight returned to non-obese levels. G-CSF administration accelerated the reduction in of body weight in obese mice. Additionally, G-CSF treatment reduced insulin levels, diminished heart fibrosis, increased exercise capacity and reversed cardiac alterations, including bradycardia, elevated QRS amplitude, augmented P amplitude, increased septal wall thickness, left ventricular posterior thickening and cardiac output reduction. CONCLUSION: Our results indicate that G-CSF administration caused beneficial effects on obesity-associated cardiac impairment.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Obesidade/complicações , Adiponectina/sangue , Animais , Glicemia/metabolismo , Colesterol/sangue , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Hemodinâmica , Insulina/sangue , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Obesidade/patologia , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...