Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37237806

RESUMO

Control of the important pathogen, Gallibacterium anatis, which causes salpingitis and peritonitis in poultry, relies on treatment using antimicrobial compounds. Among these, quinolones and fluoroquinolones have been used extensively, leading to a rise in the prevalence of resistant strains. The molecular mechanisms leading to quinolone resistance, however, have not previously been described for G. anatis, which is the aim of this study. The present study combines phenotypic antimicrobial resistance data with genomic sequence data from a collection of G. anatis strains isolated from avian hosts between 1979 and 2020. Minimum inhibitory concentrations were determined for nalidixic acid, as well as for enrofloxacin for each included strain. In silico analyses included genome-wide queries for genes known to convey resistance towards quinolones, identification of variable positions in the primary structure of quinolone protein targets and structural prediction models. No resistance genes known to confer resistance to quinolones were identified. Yet, a total of nine positions in the quinolone target protein subunits (GyrA, GyrB, ParC and ParE) displayed substantial variation and were further analyzed. By combining variation patterns with observed resistance patterns, positions 83 and 87 in GyrA, as well as position 88 in ParC, appeared to be linked to increased resistance towards both quinolones included. As no notable differences in tertiary structure were observed between subunits of resistant and sensitive strains, the mechanism behind the observed resistance is likely due to subtle shifts in amino acid side chain properties.

2.
J Appl Microbiol ; 133(2): 870-882, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35503033

RESUMO

AIMS: To provide a reliable, reproducible and centrifuge-free filtration protocol for clarification of large volumes of bacterial cultures. METHODS AND RESULTS: Four experiments were designed to compare different techniques enabling clarification of Escherichia coli cultures using as a benchmark the concentration and quality of bacterial outer membrane vesicles (OMVs). The experiments were designed to examine the performance of different extraction methods on large volume (≥1 L) filtrations of bacterial culture media. Performance parameters included filtration flow rates, sterility testing and characterization of the filtrates by: (i) SDS-PAGE, (ii) cryogenic transmission electron microscopy, (iii) nanoparticle tracking analysis and (iv) Qubit protein quantification. The experiments revealed that: (i) addition of the filter aid Diatomaceous Earth to the bacterial cultures improved filtration flow rates significantly and eliminated the need for centrifugation prior to filtration; (ii) sterile filtration was successful as no bacterial passage was identified through the membrane filter; (iii) centrifuge-free filtrates contained an increased amount of OMVs compared to centrifuged filtrates. CONCLUSIONS: In comparison to conventional centrifuge-based protocols, the clarification method presented has universal applicability for a broad range of microbial extraction procedures, regardless of the volume of culture harvested. Moreover, the decreased amount of OMVs presented in the filtrates following centrifugation step provides an additional argument in favour of a centrifuge-free approach. SIGNIFICANCE AND IMPACT OF THE STUDY: Sterile filtration is a universal method for the clarification of bacterial cultures. Common challenges related to filtration include filter clogging and long processing times, due to limited centrifugation capacity, which can affect product quality. The proposed protocol is likely to ensure a highly effective filtration process and could be a novel approach in improving the filtrate products without the need of centrifugation.


Assuntos
Bactérias , Filtração , Centrifugação/métodos , Filtração/métodos
3.
Vet Res ; 52(1): 27, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596999

RESUMO

Gallibacterium anatis is a common cause of reproductive tract infection in chickens, which leads to reduced egg production and increased mortality. This study was undertaken to investigate prevalence of G. anatis in 12 poultry flocks originating from Iranian provinces with leading chicken production and to determine genetic diversity, antimicrobial resistance, and the presence of major antigens of the isolates investigated. Out of the 120 chicken tracheal samples collected and tested, 84 (70%) were positive for G. anatis. Genotyping by Pulse Field Gel Electrophoresis and genome sequencing revealed a total of 24 pulsotypes for 71 strains (at a 87% similarity level) and seven genome clusters comprising 21 strains (97% similarity level), respectively. The combination of the two typing methods confirmed the presence of several genotypes originating from a common ancestor affecting poultry yet also suggested that identical clones were shared among chickens within farms and between different farms. The latter finding is to our knowledge the first example of clonal presence of G. anatis in epidemiologically unrelated farms. The 21 sequenced strains were characterized against a panel of commonly used antibiotics and showed lowered sensitivity to tetracycline (76.2%) and enrofloxacin (90.5%). The widespread presence of multiresistant G. anatis isolates calls for non-antibiotic prophylactics. Three major immunogen genes, gtxA, Gab_1309 and Gab_2312 were detected in the isolates indicating these antigens likely represent effective vaccine targets. A conserved sequence of the gtxA gene across a range of epidemiologically independent strains suggests the use of GtxA for future vaccine development purposes.


Assuntos
Antibacterianos/farmacologia , Galinhas , Infecções por Pasteurellaceae/veterinária , Pasteurellaceae/efeitos dos fármacos , Pasteurellaceae/isolamento & purificação , Doenças das Aves Domésticas/microbiologia , Animais , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Irã (Geográfico)/epidemiologia , Infecções por Pasteurellaceae/epidemiologia , Infecções por Pasteurellaceae/microbiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...