Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 11(10)2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249989

RESUMO

The stability of lath-like microstructures during low-temperature isothermal ageing was analyzed in a Fe5Ni0.33C (in wt %) steel. The microstructures were characterized using Scanning Electron Microscopy (SEM) coupled with Electron Backscatter Diffraction (EBSD). Advanced orientation data processing was applied to quantify the hierarchical and multiscale organization of crystallographic variants subdividing Prior Austenite Grains (PAG) into packets/blocks/sub-blocks. The result shows that ferrite laths of martensite or lower bainite are stable, whatever the ageing temperature (up to 380 °C). On the contrary, a granularization process is triggered when microstructures contain a fraction of upper bainite. This metallurgical evolution corresponds to a rapid and significant change of the ferrite matrix involving a disappearance of 60° disoriented blocks. The phenomenon affects in turn the mechanical properties. The final microstructures obtained after isothermal holding look like granular bainite, which raises some questions about the classification of bainite.

2.
Materials (Basel) ; 11(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949883

RESUMO

Quenching and Partitioning (Q&P) steels are promising candidates for automotive applications because of their lightweight potential. Their properties depend on carbon enrichment in austenite which, in turn, is strongly influenced by carbide precipitation in martensite during quenching and partitioning treatment. In this paper, by coupling in situ High Energy X-Ray Diffraction (HEXRD) experiments and Transmission Electron Microscopy (TEM), we give some clarification regarding the precipitation process of iron carbides in martensite throughout the Q&P process. For the first time, precipitation kinetics was followed in real time. It was shown that precipitation starts during the reheating sequence for the steel studied. Surprisingly, the precipitated fraction remains stable all along the partitioning step at 400 °C. Furthermore, the analyses enable the conclusion that the iron carbides are most probably eta carbides. The presence of cementite was ruled out, while the presence of several epsilon carbides cannot be strictly excluded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...