Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(16): 168650, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866091

RESUMO

Engineered reverse hairpin constructs containing a partial C-heptad repeat (CHR) sequence followed by a short loop and full-length N-heptad repeat (NHR) were previously shown to form trimers in solution and to be nanomolar inhibitors of HIV-1 Env mediated fusion. Their target is the in situ gp41 fusion intermediate, and they have similar potency to other previously reported NHR trimers. However, their design implies that the NHR is partially covered by CHR, which would be expected to limit potency. An exposed hydrophobic pocket in the folded structure may be sufficient to confer the observed potency, or they may exist in a partially unfolded state exposing full length NHR. Here we examined their structure by crystallography, CD and fluorescence, establishing that the proteins are folded hairpins both in crystal form and in solution. We examined unfolding in the milieu of the fusion reaction by conducting experiments in the presence of a membrane mimetic solvent and by engineering a disulfide bond into the structure to prevent partial unfolding. We further examined the role of the hydrophobic pocket, using a hairpin-small molecule adduct that occluded the pocket, as confirmed by X-ray footprinting. The results demonstrated that the NHR region nominally covered by CHR in the engineered constructs and the hydrophobic pocket region that is exposed by design were both essential for nanomolar potency and that interaction with membrane is likely to play a role in promoting the required inhibitor structure. The design concepts can be applied to other Class 1 viral fusion proteins.

2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33361333

RESUMO

The molecular basis for the severity and rapid spread of the COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. ORF8 is a rapidly evolving accessory protein that has been proposed to interfere with immune responses. The crystal structure of SARS-CoV-2 ORF8 was determined at 2.04-Šresolution by X-ray crystallography. The structure reveals a ∼60-residue core similar to SARS-CoV-2 ORF7a, with the addition of two dimerization interfaces unique to SARS-CoV-2 ORF8. A covalent disulfide-linked dimer is formed through an N-terminal sequence specific to SARS-CoV-2, while a separate noncovalent interface is formed by another SARS-CoV-2-specific sequence, 73YIDI76 Together, the presence of these interfaces shows how SARS-CoV-2 ORF8 can form unique large-scale assemblies not possible for SARS-CoV, potentially mediating unique immune suppression and evasion activities.


Assuntos
Estrutura Molecular , SARS-CoV-2/química , Proteínas Virais/química , Evolução Molecular , Evasão da Resposta Imune
3.
bioRxiv ; 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32869027

RESUMO

The molecular basis for the severity and rapid spread of the COVID-19 disease caused by SARS-CoV-2 is largely unknown. ORF8 is a rapidly evolving accessory protein that has been proposed to interfere with immune responses. The crystal structure of SARS-CoV-2 ORF8 was determined at 2.04 Å resolution by x-ray crystallography. The structure reveals a ~60 residue core similar to SARS-CoV ORF7a with the addition of two dimerization interfaces unique to SARS-CoV-2 ORF8. A covalent disulfide-linked dimer is formed through an N-terminal sequence specific to SARS-CoV-2, while a separate non-covalent interface is formed by another SARS-CoV-2-specific sequence, 73 YIDI 76 . Together the presence of these interfaces shows how SARS-CoV-2 ORF8 can form unique large-scale assemblies not possible for SARS-CoV, potentially mediating unique immune suppression and evasion activities.

4.
J Phys Chem B ; 124(4): 601-616, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31846581

RESUMO

Sulfur is critical for the correct structure and proper function of proteins. Yet, lacking a sensitive enough isotope, nuclear magnetic resonance (NMR) experiments are unable to deliver for sulfur in proteins the usual wealth of chemical, dynamic, and structural information. This limitation can be circumvented by substituting sulfur with selenium, which has similar physicochemical properties and minimal impact on protein structures but possesses an NMR compatible isotope (77Se). Here we exploit the sensitivity of 77Se NMR to the nucleus' chemical milieu and use selenomethionine as a probe for its proteinaceous environment. However, such selenium NMR spectra of proteins currently resist a reliable interpretation because systematic connections between variations of system variables and changes in 77Se NMR parameters are still lacking. To start narrowing this knowledge gap, we report here on a biological 77Se magnetic resonance data bank based on a systematically designed library of GB1 variants in which a single selenomethionine was introduced at different locations within the protein. We recorded the resulting isotropic 77Se chemical shifts and relaxation times for six GB1 variants by solution-state 77Se NMR. For four of the GB1 variants we were also able to determine the chemical shift anisotropy tensor of SeM by solid-state 77Se NMR. To enable interpretation of the NMR data, the structures of five of the GB1 variants were solved by X-ray crystallography to a resolution of 1.2 Å, allowing us to unambiguously determine the conformation of the selenomethionine. Finally, we combine our solution- and solid-state NMR data with the structural information to arrive at general insights regarding the execution and interpretation of 77Se NMR experiments that exploit selenomethionine to probe proteins.


Assuntos
Proteínas/química , Selenometionina/química , Isótopos/química , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Selênio/química
5.
Cell ; 175(5): 1380-1392.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343895

RESUMO

ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas do Citoesqueleto/metabolismo , N-Glicosil Hidrolases/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , ADP-Ribosilação , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Domínio Catalítico , Proteínas do Citoesqueleto/antagonistas & inibidores , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/metabolismo , Humanos , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Serratia/metabolismo , Imagem com Lapso de Tempo
6.
Nat Methods ; 14(4): 443-449, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250468

RESUMO

X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.


Assuntos
Cristalografia por Raios X/métodos , Lasers , Acústica , Complexo de Proteína do Fotossistema II/química , Fitocromo/química , Ribonucleotídeo Redutases/química , Espectrometria por Raios X/métodos
7.
Structure ; 24(4): 631-640, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26996959

RESUMO

X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples.


Assuntos
Cristalografia por Raios X/instrumentação , Enzimas/química , Acústica , Cristalografia por Raios X/métodos , Modelos Moleculares , Muramidase/química , Conformação Proteica , Termolisina/química
8.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 94-103, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615864

RESUMO

Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s(-1)) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.


Assuntos
Acústica , Ensaios de Triagem em Larga Escala/métodos , Proteínas/química , Sefarose/química , Cristalização , Hidrogéis
9.
J Synchrotron Radiat ; 21(Pt 6): 1231-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25343789

RESUMO

X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.


Assuntos
Cristalografia por Raios X/métodos , Insulina/química , Insulina/efeitos da radiação , Muramidase/química , Muramidase/efeitos da radiação , Espalhamento a Baixo Ângulo , Humanos , Próteses e Implantes , Solventes/química , Síncrotrons , Difração de Raios X
10.
Oncotarget ; 5(14): 5198-208, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25105564

RESUMO

We report two crystal structures of the wild-type phosphatidylinositol 3-kinase α (PI3Kα) heterodimer refined to 2.9 Å and 3.4 Å resolution: the first as the free enzyme, the second in complex with the lipid substrate, diC4-PIP2, respectively. The first structure shows key interactions of the N-terminal SH2 domain (nSH2) and iSH2 with the activation loop that suggest a mechanism by which the enzyme is inhibited in its basal state. In the second structure, the lipid substrate binds in a positively charged pocket adjacent to the ATP-binding site, bordered by the P-loop, the activation loop and the iSH2 domain. An additional lipid-binding site was identified at the interface of the ABD, iSH2 and kinase domains. The ability of PI3Kα to bind an additional PIP2 molecule was confirmed in vitro by fluorescence quenching experiments. The crystal structures reveal key differences in the way the nSH2 domain interacts with wild-type p110α and with the oncogenic mutant p110αH1047R. Increased buried surface area and two unique salt-bridges observed only in the wild-type structure suggest tighter inhibition in the wild-type PI3Kα than in the oncogenic mutant. These differences may be partially responsible for the increased basal lipid kinase activity and increased membrane binding of the oncogenic mutant.


Assuntos
Fosfatidilinositol 3-Quinases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Compostos de Boro/química , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Conformação Proteica , Células Sf9 , Transdução de Sinais , Spodoptera , Domínios de Homologia de src
11.
PLoS One ; 9(7): e101036, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24988328

RESUMO

High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size.


Assuntos
Acústica , Cristalografia por Raios X/métodos , Proteínas/química , Cristalização
12.
J Mol Biol ; 426(15): 2755-68, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24882693

RESUMO

The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high level of sequence similarity to the Ezrin-Radixin-Moesin family of proteins, the structural model of Ezrin-Radixin-Moesin protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low-resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small-angle neutron scattering and binding experiments. Small-angle neutron scattering shows that, in solution, both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding and contributes to resolving a controversy about the molecular conformation and binding activity of Merlin.


Assuntos
Genes Supressores de Tumor , Neurofibromina 2/química , Difração de Nêutrons/métodos , Fosfoproteínas/metabolismo , Espalhamento a Baixo Ângulo , Trocadores de Sódio-Hidrogênio/metabolismo , Calorimetria , Dicroísmo Circular , Humanos , Modelos Moleculares , Conformação Molecular , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosforilação , Ressonância de Plasmônio de Superfície
13.
J Membr Biol ; 247(9-10): 1005-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24862870

RESUMO

Nutrient import across Gram-negative bacteria's outer membrane is powered by the proton-motive force, delivered by the cytoplasmic membrane protein complex ExbB-ExbD-TonB. Having purified the ExbB4-ExbD2 complex in the detergent dodecyl maltoside, we substituted amphipol A8-35 for detergent, forming a water-soluble membrane protein/amphipol complex. Properties of the ExbB4-ExbD2 complex in detergent or in amphipols were compared by gel electrophoresis, size exclusion chromatography, asymmetric flow field-flow fractionation, thermal stability assays, and electron microscopy. Bound detergent and fluorescently labeled amphipol were assayed quantitatively by 1D NMR and analytical ultracentrifugation, respectively. The structural arrangement of ExbB4-ExbD2 was examined by EM, small-angle X-ray scattering, and small-angle neutron scattering using a deuterated amphipol. The amphipol-trapped ExbB4-ExbD2 complex is slightly larger than its detergent-solubilized counterpart. We also investigated a different oligomeric form of the two proteins, ExbB6-ExbD4, and propose a structural arrangement of its transmembrane α-helical domains.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Polímeros/química , Propilaminas/química , Tensoativos/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Sítios de Ligação , Escherichia coli/química , Interações Hidrofóbicas e Hidrofílicas , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Conformação Proteica , Solubilidade
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1177-89, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816088

RESUMO

Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.


Assuntos
Acústica , Cristalização/métodos , Proteínas/química , Bibliotecas de Moléculas Pequenas , Acústica/instrumentação , Cristalização/instrumentação , Cristalografia por Raios X , Descoberta de Drogas , Desenho de Equipamento , Muramidase/química , Termolisina/química , Tripsina/química
15.
J Synchrotron Radiat ; 21(Pt 3): 627-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24763654

RESUMO

Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.


Assuntos
Cristalografia por Raios X/instrumentação , Lentes , Substâncias Macromoleculares/química , Síncrotrons/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , New York , Espalhamento de Radiação
16.
Int J Inflam ; 2013: 918016, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24298392

RESUMO

Previously, we demonstrated that prostaglandin E2 (PGE2) induces C-C chemokine receptor type 7 (CCR7) expression on human monocytes, which stimulates their subsequent migration in response to the CCR7 natural ligands CCL19 and CCL21. In this study, we determined whether PGE2 affects CCR7 expression on macrophages. Flow cytometric analysis and chemotaxis assays were performed on Mono Mac-1-derived macrophage (MDMM-1) as well as unpolarized monocyte-derived macrophages (MDMs) to determine the CCR7 expression and functionality in the presence of PGE2. Data revealed that a MDMM-1 exhibited markedly downregulated CCR7 expression and functionality that were partially restored by treatment with PGE2. In MDMs, we observed a drastic downregulation of CCR7 expression and functionality that were unaffected following PGE2 treatment. Our data indicate that monocyte differentiation induces the loss of CCR7 expression and that PGE2 is unable to modulate CCR7 expression and functionality as shown previously in monocytes.

17.
Artigo em Inglês | MEDLINE | ID: mdl-24316836

RESUMO

One way that bacteria regulate the transcription of specific genes to adapt to environmental challenges is to use different σ factors that direct the RNA polymerase holoenzyme to distinct promoters. Unlike σ(70) RNA polymerase (RNAP), σ(54) RNAP is unable to initiate transcription without an activator: enhancer-binding protein (EBP). All EBPs contain one ATPase domain that belongs to the family of ATPases associated with various cellular activities (AAA+ ATPases). AAA+ ATPases use the energy of ATP hydrolysis to remodel different target macromolecules to perform distinct functions. These mechanochemical enzymes are known to form ring-shaped oligomers whose conformations strongly depend upon nucleotide status. Here, the crystallization of the AAA+ ATPase domain of an EBP from Aquifex aeolicus, NtrC1, in the presence of the non-hydrolyzable ATP analog ADP-BeFx is reported. X-ray diffraction data were collected from two crystals from two different protein fractions of the NtrC1 ATPase domain. Previously, this domain was co-crystallized with ADP and ATP, but the latter crystals were grown from the Walker B substitution variant E239A. Therefore, the new data sets are the first for a wild-type EBP ATPase domain co-crystallized with an ATP analog and they reveal a new crystal form. The resulting structure(s) will shed light on the mechanism of EBP-type transcription activators.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Bactérias/química , Proteínas de Ligação a DNA/química , RNA Polimerase Sigma 54/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Bactérias/genética , Bactérias/metabolismo , Berílio/química , Cristalização , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fluoretos/química , Expressão Gênica , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
18.
J Synchrotron Radiat ; 20(Pt 5): 805-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955046

RESUMO

To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Proteínas/química , Coleta de Dados , Substâncias Macromoleculares , Síncrotrons
19.
Immunol Lett ; 146(1-2): 70-3, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22659045

RESUMO

Prostaglandin E(2) (PGE(2)) induces the expression of C-C chemokine receptor type 7 (CCR7) on human monocytes, thereby enabling their subsequent migration in response to CCL19 and CCL21, the natural ligands for CCR7. To date, important mediators of PGE(2)-mediated monocyte migration remain unknown. In this study, we explored the role of mitogen-activated protein kinases and the RhoA/Rho-associated protein kinase (ROCK) pathway in CCR7-dependent monocyte migration in the presence of PGE(2). Our results indicate that CCL19 binding to CCR7 promotes the activation of p38, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase and leads to monocyte migration. Moreover, the RhoA/ROCK pathway was essential for PGE(2)-mediated CCR7-dependent monocyte migration.


Assuntos
Dinoprostona/farmacologia , Regulação da Expressão Gênica/imunologia , Monócitos/imunologia , Receptores CCR7/genética , Transdução de Sinais/imunologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Cultura Primária de Células , Receptores CCR7/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/imunologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/imunologia
20.
J Biol Chem ; 287(28): 23748-56, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22577139

RESUMO

Rhodopseudomonas palustris metabolizes aromatic compounds derived from lignin degradation products and has the potential for bioremediation of xenobiotic compounds. We recently identified four possible solute-binding proteins in R. palustris that demonstrated binding to aromatic lignin monomers. Characterization of these proteins in the absence and presence of the aromatic ligands will provide unprecedented insights into the specificity and mode of aromatic ligand binding in solute-binding proteins. Here, we report the thermodynamic and structural properties of the proteins with aromatic ligands using isothermal titration calorimetry, small/wide angle x-ray scattering, and theoretical predictions. The proteins exhibit high affinity for the aromatic substrates with dissociation constants in the low micromolar to nanomolar range. The global shapes of the proteins are characterized by flexible ellipsoid-like structures with maximum dimensions in the 80-90-Å range. The data demonstrate that the global shapes remained unaltered in the presence of the aromatic ligands. However, local structural changes were detected in the presence of some ligands, as judged by the observed features in the wide angle x-ray scattering regime at q ~0.20-0.40 Å(-1). The theoretical models confirmed the elongated nature of the proteins and showed that they consist of two domains linked by a hinge. Evaluation of the protein-binding sites showed that the ligands were found in the hinge region and that ligand stabilization was primarily driven by hydrophobic interactions. Taken together, this study shows the capability of identifying solute-binding proteins that interact with lignin degradation products using high throughput genomic and biophysical approaches, which can be extended to other organisms.


Assuntos
Proteínas de Bactérias/química , Hidrocarbonetos Aromáticos/química , Estrutura Terciária de Proteína , Termodinâmica , Algoritmos , Proteínas de Bactérias/metabolismo , Benzoatos/química , Benzoatos/metabolismo , Calorimetria , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , Parabenos/química , Parabenos/metabolismo , Ligação Proteica , Rodopseudomonas/metabolismo , Espalhamento a Baixo Ângulo , Tirosina/química , Tirosina/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...