Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(9): e0163660, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27662200

RESUMO

Zinc binding domains are common and versatile protein structural motifs that mediate diverse cellular functions. Among the many structurally distinct families of zinc finger (ZnF) proteins, the AN1 domain remains poorly characterized. Cuz1 is one of two AN1 ZnF proteins in the yeast S. cerevisiae, and is a stress-inducible protein that functions in protein degradation through direct interaction with the proteasome and Cdc48. Here we report the solution structure of the Cuz1 AN1 ZnF which reveals a compact C6H2 zinc-coordinating domain that resembles a two-finger hand holding a tri-helical clamp. A central phenylalanine residue sits between the two zinc-coordinating centers. The position of this phenylalanine, just before the penultimate zinc-chelating cysteine, is strongly conserved from yeast to man. This phenylalanine shows an exceptionally slow ring-flipping rate which likely contributes to the high rigidity and stability of the AN1 domain. In addition to the zinc-chelating residues, sequence analysis of Cuz1 indicates a second highly evolutionarily conserved motif. This LDFLP motif is shared with three human proteins-Zfand1, AIRAP, and AIRAP-L-the latter two of which share similar cellular functions with Cuz1. The LDFLP motif, while embedded within the zinc finger domain, is surface exposed, largely uninvolved in zinc chelation, and not required for the overall fold of the domain. The LDFLP motif was dispensable for Cuz1's major known functions, proteasome- and Cdc48-binding. These results provide the first structural characterization of the AN1 zinc finger domain, and suggest that the LDFLP motif may define a sub-family of evolutionarily conserved AN1 zinc finger proteins.

2.
J Am Chem Soc ; 134(2): 1019-29, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22142443

RESUMO

Cyclic diguanosine-monophosphate (c-di-GMP) is a bacterial signaling molecule that triggers a switch from motile to sessile bacterial lifestyles. This mechanism is of considerable pharmaceutical interest, since it is related to bacterial virulence, biofilm formation, and persistence of infection. Previously, c-di-GMP has been reported to display a rich polymorphism of various oligomeric forms at millimolar concentrations, which differ in base stacking and G-quartet interactions. Here, we have analyzed the equilibrium and exchange kinetics between these various forms by NMR spectroscopy. We find that the association of the monomer into a dimeric form is in fast exchange (

Assuntos
GMP Cíclico/análogos & derivados , Bactérias/química , Bactérias/metabolismo , GMP Cíclico/química , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Cloreto de Sódio , Espectrofotometria Ultravioleta
3.
J Biol Chem ; 286(16): 14304-14, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21310957

RESUMO

Cyclic diguanosine monophosphate (c-di-GMP) is a ubiquitous bacterial second messenger that controls the switch from a single-cell lifestyle to surface-attached, multicellular communities called biofilms. PilZ domain proteins are a family of bacterial c-di-GMP receptors, which control various cellular processes. We have solved the solution structure of the Pseudomonas aeruginosa single-domain PilZ protein PA4608 in complex with c-di-GMP by NMR spectroscopy. Isotope labeling by (13)C and (15)N of both the ligand and the protein made it possible to define the structure of c-di-GMP in the complex at high precision by a large number of intermolecular and intraligand NOEs and by two intermolecular hydrogen bond scalar couplings. Complex formation induces significant rearrangements of the C- and N-terminal parts of PA4608. c-di-GMP binds as an intercalated, symmetric dimer to one side of the ß-barrel, thereby displacing the C-terminal helix of the apo state. The N-terminal RXXXR PilZ domain motif, which is flexible in the apo state, wraps around the ligand and in turn ties the displaced C terminus in a loose manner by a number of hydrophobic contacts. The recognition of the dimeric ligand is achieved by numerous H-bonds and stacking interactions involving residues Arg(8), Arg(9), Arg(10), and Arg(13) of the PilZ motif, as well as ß-barrel residues Asp(35) and Trp(77). As a result of the rearrangement of the N and C termini, a highly negative surface is created on one side of the protein complex. We propose that the movement of the termini and the resulting negative surface form the basis for downstream signaling.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , GMP Cíclico/química , Proteínas Fúngicas/química , Sequência de Aminoácidos , Biofilmes , Dimerização , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 104(10): 4112-7, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17360486

RESUMO

Bacteria are able to switch between two mutually exclusive lifestyles, motile single cells and sedentary multicellular communities that colonize surfaces. These behavioral changes contribute to an increased fitness in structured environments and are controlled by the ubiquitous bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP). In response to changing environments, fluctuating levels of c-di-GMP inversely regulate cell motility and cell surface adhesins. Although the synthesis and breakdown of c-di-GMP has been studied in detail, little is known about the downstream effector mechanisms. Using affinity chromatography, we have isolated several c-di-GMP-binding proteins from Caulobacter crescentus. One of these proteins, DgrA, is a PilZ homolog involved in mediating c-di-GMP-dependent control of C. crescentus cell motility. Biochemical and structural analysis of DgrA and homologs from C. crescentus, Salmonella typhimurium, and Pseudomonas aeruginosa demonstrated that this protein family represents a class of specific diguanylate receptors and suggested a general mechanism for c-di-GMP binding and signal transduction. Increased concentrations of c-di-GMP or DgrA blocked motility in C. crescentus by interfering with motor function rather than flagellar assembly. We present preliminary evidence implicating the flagellar motor protein FliL in DgrA-dependent cell motility control.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Transporte/fisiologia , Caulobacter crescentus/metabolismo , GMP Cíclico/análogos & derivados , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Movimento Celular , Cromatografia de Afinidade , Reagentes de Ligações Cruzadas/farmacologia , GMP Cíclico/metabolismo , Escherichia coli/metabolismo , Flagelos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Pseudomonas aeruginosa/metabolismo , Salmonella typhimurium/metabolismo , Raios Ultravioleta
5.
EMBO J ; 22(8): 1824-34, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12682015

RESUMO

The TipAL protein, a bacterial transcriptional regulator of the MerR family, is activated by numerous cyclic thiopeptide antibiotics. Its C-terminal drug-binding domain, TipAS, defines a subfamily of broadly distributed bacterial proteins including Mta, a central regulator of multidrug resistance in Bacillus subtilis. The structure of apo TipAS, solved by solution NMR [Brookhaven Protein Data Bank entry 1NY9], is composed of a globin-like alpha-helical fold with a deep surface cleft and an unfolded N-terminal region. Antibiotics bind within the cleft at a position that is close to the corresponding heme pocket in myo- and hemoglobin, and induce folding of the N-terminus. Thus the classical globin fold is well adapted not only for accommodating its canonical cofactors, heme and other tetrapyrroles, but also for the recognition of a variety of antibiotics where ligand binding leads to transcriptional activation and drug resistance.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Transativadores/química , Transativadores/metabolismo , Sequência de Aminoácidos , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...