Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 643-654, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552581

RESUMO

HYPOTHESIS: Sample-spanning particle networks are used to induce structure and a yield stress, necessary for 3D printing of porous ceramics and paints. In capillary suspensions, a small quantity of immiscible secondary fluid is incorporated into a suspension. By further adding nanoparticles with a range of hydrophobicities, the structure of the bridges and microparticle-microparticle contacts is expected to be modified, resulting in a tunable yield stress and shear moduli. Moreover, the compressibility of these samples, important in many processing and application steps, is expected to be sensitive to these changes. EXPERIMENT: The nanoparticle hydrophobicity was altered and their position relative to the microparticles and the bridges was examined using confocal microscopy where the correlation between bridge size and network structure was observed. A step-wise uniaxial compression test on the confocal was conducted to monitor the microparticle movement and structural changes between capillary suspension networks with and without nanoparticles. FINDINGS: Our observation suggests that nanoparticles induce the formation of thin liquid films on the surface of the microparticles, mitigating contact line pinning and promoting internal liquid exchange. Additionally, nanoparticles at microparticle contact regions further diminish Hertzian contact, enhancing the capacity for rearrangement. These effects enhance microparticle movement, narrowing the bridge size distribution.

2.
Soft Matter ; 16(36): 8380-8393, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32814939

RESUMO

The structural properties of suspensions and other multiphase systems are vital to overall processability, functionality and acceptance among consumers. Therefore, it is crucial to understand the intrinsic connection between the microstructure of a material and the resulting rheological properties. Here, we demonstrate how the transitions in the microstructural conformations can be quantified and correlated to rheological measurements. We find semi-local parameters from graph theory, the mathematical study of networks, to be useful in linking structure and rheology. Our results, using capillary suspensions as a model system, show that the use of the clustering coefficient, in combination with the coordination number, is able to capture not only the agglomeration of particles, but also measures the formation of groups. These phenomena are tightly connected to the rheological properties. The present sparse networks cannot be described by established techniques such as betweenness centrality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA