Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(Supplement_1): 1566-1568, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613667
3.
Sci Rep ; 13(1): 4581, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941285

RESUMO

The microstructure of minerals and rocks can significantly alter reaction rates. This study focuses on identifying transport paths in low porosity rocks based on the hypothesis that grain boundary widening accelerates reactions in which one mineral is replaced by another (replacement reaction). We conducted a time series of replacement experiments of three limestones (CaCO3) of different microstructures and solid impurity contents using FeCl2. Reacted solids were analyzed using chemical imaging, small angle X-ray and neutron scattering and Raman spectroscopy. In high porosity limestones replacement is reaction controlled and complete replacement was observed within 2 days. In low porosity limestones that contain 1-2% dolomite impurities and are dominated by grain boundaries, a reaction rim was observed whose width did not change with reaction time. Siderite (FeCO3) nucleation was observed in all parts of the rock cores indicating the percolation of the solution throughout the complete core. Dolomite impurities were identified to act as nucleation sites leading to growth of crystals that exert force on the CaCO3 grains. Widening of grain boundaries beyond what is expected based on dissolution and thermal grain expansion was observed in the low porosity marble containing dolomite impurities. This leads to a self-perpetuating cycle of grain boundary widening and reaction acceleration instead of reaction front propagation.

4.
J Vis Exp ; (173)2021 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-34369934

RESUMO

Gas reactions studied by in situ electron microscopy can be used to capture the real-time morphological and microchemical transformations of materials at length scales down to the atomic level. In situ closed-cell gas reaction (CCGR) studies performed using (scanning) transmission electron microscopy (STEM) can separate and identify localized dynamic reactions, which are extremely challenging to capture using other characterization techniques. For these experiments, we used a CCGR holder that utilizes microelectromechanical systems (MEMS)-based heating microchips (hereafter referred to as "E-chips"). The experimental protocol described here details the method for performing in situ gas reactions in dry and wet gases in an aberration-corrected STEM. This method finds relevance in many different materials systems, such as catalysis and high-temperature oxidation of structural materials at atmospheric pressure and in the presence of various gases with or without water vapor. Here, several sample preparation methods are described for various material form factors. During the reaction, mass spectra obtained with a residual gas analyzer (RGA) system with and without water vapor further validates gas exposure conditions during reactions. Integrating an RGA with an in situ CCGR-STEM system can, therefore, provide critical insight to correlate gas composition with the dynamic surface evolution of materials during reactions. In situ/operando studies using this approach allow for detailed investigation of the fundamental reaction mechanisms and kinetics that occur at specific environmental conditions (time, temperature, gas, pressure), in real-time, and at high spatial resolution.


Assuntos
Gases , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão e Varredura , Oxirredução , Temperatura
5.
J Colloid Interface Sci ; 603: 459-467, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34214722

RESUMO

Feldspars are the most abundant minerals in the Earth's crust, and are also important constituents of many lunar rocks and some stony meteorites. Albite (NaAlSi3O8) makes up the sodium corner of the feldspar ternary diagram (KAlSi3O8 - NaAlSi3O8 - CaAl2Si2O8) and connects the alkali-feldspar and plagioclase binary joins. Synthesis of albite, however, has long been a problem, even at high temperatures and even at high pressures when dry. In fact, most successful syntheses require the combination of high-pressure, high-temperature, and hydrothermal environments. This paper presents a sol-gel method of albite synthesis that requires hydrothermal processing followed by high-temperature recrystallization, but no high-pressure environments. This has the advantage of allowing synthesis of relatively large amounts of material and controlled elemental substitutions.

6.
Microsc Microanal ; 26(2): 229-239, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32157982

RESUMO

Protocols for conducting in situ transmission electron microscopy (TEM) reactions using an environmental TEM with dry gases have been well established. However, many important reactions that are relevant to catalysis or high-temperature oxidation occur at atmospheric pressure and are influenced by the presence of water vapor. These experiments necessitate using a closed-cell gas reaction TEM holder. We have developed protocols for introducing and controlling water vapor concentrations in experimental gases from 2% at a full atmosphere to 100% at ~17 Torr, while measuring the gas composition using a residual gas analyzer (RGA) on the return side of the in situ gas reactor holder. Initially, as a model system, cube-shaped MgO crystals were used to help develop the protocols for handling the water vapor injection process and confirming that we could successfully inject water vapor into the gas cell. The interaction of water vapor with MgO triggered surface morphological and chemical changes as a result of the formation of Mg(OH)2, later validated with mass spectra obtained with our RGA system with and without water vapor. Integrating an RGA with an in situ scanning/TEM closed-cell gas reaction system can thus provide critical measurements correlating gas composition with dynamic surface restructuring of materials during reactions.

7.
Nat Chem ; 11(12): 1098-1105, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636391

RESUMO

In an effort to obtain the maximum atom efficiency, research on heterogeneous single-atom catalysts has intensified recently. Anchoring organometallic homogeneous catalysts to surfaces creates issues with retaining mononuclearity and activity, while the several techniques developed to prepare atomically dispersed precious metals on oxide supports are usually complex. Here we report a facile one-pot synthesis of inorganometallic mononuclear gold complexes formed in alkaline solutions as robust and versatile single-atom gold catalysts. The complexes remain intact on impregnation onto supports or after drying in air to give a crystalline powder. They can be used to interrogate the nuclearity of the catalytically active gold site for reactions known to be catalysed by oxidized gold species. We show that the [Au1-Ox]- cluster directs the heterogeneous coupling of two methanol molecules to methyl formate and hydrogen with a 100% selectivity below 180 °C. The reaction is industrially important as well as the key step in methanol steam reforming on gold catalysts.

8.
Nat Commun ; 10(1): 3808, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444350

RESUMO

Despite the maximized metal dispersion offered by single-atom catalysts, further improvement of intrinsic activity can be hindered by the lack of neighboring metal atoms in these systems. Here we report the use of isolated Pt1 atoms on ceria as "seeds" to develop a Pt-O-Pt ensemble, which is well-represented by a Pt8O14 model cluster that retains 100% metal dispersion. The Pt atom in the ensemble is 100-1000 times more active than their single-atom Pt1/CeO2 parent in catalyzing the low-temperature CO oxidation under oxygen-rich conditions. Rather than the Pt-O-Ce interfacial catalysis, the stable catalytic unit is the Pt-O-Pt site itself without participation of oxygen from the 10-30 nm-size ceria support. Similar Pt-O-Pt sites can be built on various ceria and even alumina, distinguishable by facile activation of oxygen through the paired Pt-O-Pt atoms. Extending this design to other reaction systems is a likely outcome of the findings reported here.

9.
Phys Chem Chem Phys ; 20(44): 27822-27829, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30382264

RESUMO

The behavior of water on mineral surfaces is the key to understanding interfacial and chemical reaction processes. Olivine is one of the major rock-forming minerals and its interaction with water is a ubiquitous phenomenon both on Earth's surface and in the subsurface. This work presents a combined study using molecular dynamics (MD) simulations and quasi-elastic neutron scattering (QENS) experiments conducted using three different instruments to study the structure and dynamics of water on the forsterite (Mg-end member of olivine) surface at 270 K. A combination of three different QENS instruments probes dynamical processes occurring across a broad range of time scales (∼1 ps to ∼1 ns in this study). The water structure on the hydroxylated surface is composed of three distinct water layers, transitioning from well-ordered and nearly immobile closest to the surface to a less structured layer. The energies of three motions (including translation and rotation) derived from simulations agree well with the experiments, covering the energy range from a few to hundreds of micro electron volts.

10.
Nature ; 551(7682): 605-608, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29189776

RESUMO

An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful chemicals.

11.
Sci Rep ; 7(1): 6231, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740154

RESUMO

The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O2. The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.

12.
Sci Rep ; 7(1): 560, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28373663

RESUMO

New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show the absence of nitrate formation on catalyst. To explain these results, we explored modified Langmuir-Hinshelwood type pathways that have been proposed for oxidation reactions on single supported atom. In the first pathway, we find that there is energy barrier for the release of NO2 which prevent NO oxidation. In the second pathway, our results show that there is no driving force for the formation of O=N-O-O intermediate or nitrate on single supported Pd atoms. The decomposition of nitrate, if formed, is an endothermic event.


Assuntos
Óxido de Alumínio/química , Óxido Nítrico/química , Oxirredução , Paládio/química , Catálise , Modelos Moleculares , Modelos Teóricos , Oxigênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
13.
Chem Commun (Camb) ; 53(20): 2942-2945, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28225097

RESUMO

It is generally believed that H2O and OH- are the key species stabilizing and controlling amorphous calcium carbonate "polyamorph" forms, and may in turn control the ultimate crystallization products during synthesis and in natural systems. Yet, the locations and hydrogen-bonding network of these species in ACC have never been measured directly using neutron diffraction. We report a synthesis route that overcomes the existing challenges with respect to yield quantities and deuteration, both of which are critically necessary for high quality neutron studies.

14.
Ultramicroscopy ; 176: 218-232, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28011114

RESUMO

In situ high-resolution electron microscopy was used to reveal information at the atomic level for the disordered-to-ordered phase transformation of equiatomic FePt nanoparticles that can exhibit outstanding magnetic properties after transforming from disordered face-centered-cubic into the tetragonal L10 ordered structure. High-angle annular dark-field imaging in the scanning transmission electron microscope provided sufficient contrast between the Fe and Pt atoms to readily monitor the ordering of the atoms during in situ heating experiments. However, during continuous high-magnification imaging the electron beam influenced the kinetics of the transformation so annealing had to be performed with the electron beam blanked. At 500°C where the reaction rate was relatively slow, observation of the transformation mechanisms using this sequential imaging protocol revealed that ordering proceeded from (002) surface facets but was incomplete and multiple-domain particles were formed that contained anti-phase domain boundaries and anti-site defects. At 600 and 700°C, the limitations of sequential imaging were revealed as a consequence of increased transformation kinetics. Annealing for only 5min at 700°C produced complete single-domain L10 order; such single-domain particles were more spherical in shape with (002) facets. The in situ experiments also provided information concerning nanoparticle sintering, coalescence, and consolidation. Although there was resistance to complete sintering due to the crystallography of L10 order, the driving force from the large surface-area-to-volume ratio resulted in considerable nanoparticle coalescence, which would render such FePt nanoparticles unsuitable for use as magnetic recording media. Comparison of the in situ data acquired using the protocol described above with parallel ex situ annealing experiments showed that identical behavior resulted in all cases.

15.
Nano Lett ; 16(10): 6560-6567, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27685318

RESUMO

Investigation of atomically precise Au nanoclusters provides a route to understand the roles of coordination, size, and ligand effects on Au catalysis. Herein, we explored the catalytic behavior of a newly synthesized Au22(L8)6 nanocluster (L = 1,8-bis(diphenylphosphino) octane) with in situ uncoordinated Au sites supported on TiO2, CeO2, and Al2O3. Stability of the supported Au22 nanoclusters was probed structurally by in situ extended X-ray absorption fine structure (EXAFS) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and their ability to adsorb and oxidize CO was investigated by IR absorption spectroscopy and a temperature-programmed flow reaction. Low-temperature CO oxidation activity was observed for the supported pristine Au22(L8)6 nanoclusters without ligand removal. Density functional theory (DFT) calculations confirmed that the eight uncoordinated Au sites in the intact Au22(L8)6 nanoclusters can chemisorb both CO and O2. Use of isotopically labeled O2 demonstrated that the reaction pathway occurs mainly through a redox mechanism, consistent with the observed support-dependent activity trend of CeO2 > TiO2 > Al2O3. We conclude that the uncoordinated Au sites in the intact Au22(L8)6 nanoclusters are capable of adsorbing CO, activating O2, and catalyzing CO oxidation reaction. This work is the first clear demonstration of a ligand-protected intact Au nanocluster that is active for gas-phase catalysis without the need of ligand removal.

16.
Sci Rep ; 6: 25436, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27145983

RESUMO

Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 10(7) erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25-30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 10(17)/cm(2).

17.
Nat Commun ; 6: 8925, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26576477

RESUMO

The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.

18.
Nat Commun ; 6: 8550, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449766

RESUMO

Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One promising approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum-copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C-C bond scission that leads to loss of selectivity and catalyst deactivation. γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.

19.
J Am Chem Soc ; 137(10): 3470-3, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25746682

RESUMO

While it has long been known that different types of support oxides have different capabilities to anchor metals and thus tailor the catalytic behavior, it is not always clear whether the support is a mere carrier of the active metal site, itself not participating directly in the reaction pathway. We report that catalytically similar single-atom-centric Pt sites are formed by binding to sodium ions through -O ligands, the ensemble being equally effective on supports as diverse as TiO2, L-zeolites, and mesoporous silica MCM-41. Loading of 0.5 wt % Pt on all of these supports preserves the Pt in atomic dispersion as Pt(II), and the Pt-O(OH)x- species catalyzes the water-gas shift reaction from ∼120 to 400 °C. Since the effect of the support is "indirect," these findings pave the way for the use of a variety of earth-abundant supports as carriers of atomically dispersed platinum for applications in catalytic fuel-gas processing.

20.
Nanoscale Res Lett ; 9(1): 614, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25419195

RESUMO

By coupling techniques of simultaneous secondary (SE) and transmitted electron (TE) imaging at high resolution in a modern scanning transmission electron microscope (STEM), with the ability to heat specimens using a highly stable MEMS-based heating platform, we obtained synergistic information to clarify the behavior of catalysts during in situ thermal treatments. Au/iron oxide catalyst 'leached' to remove surface Au was heated to temperatures as high as 700°C. The Fe2O3 support particle structure tended to reduce to Fe3O4 and formed surface terraces; the formation, coalescence, and mobility of 1- to 2-nm particles on the terraces were characterized in SE, STEM-ADF, and TEM-BF modes. If combined with simultaneous nanoprobe spectroscopy, this approach will open the door to a new way of studying the kinetics of nano-scaled phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...