Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(45): 23490-23505, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621312

RESUMO

Cardiac ryanodine receptor (Ryr2) Ca2+ release channels and cellular metabolism are both disrupted in heart disease. Recently, we demonstrated that total loss of Ryr2 leads to cardiomyocyte contractile dysfunction, arrhythmia, and reduced heart rate. Acute total Ryr2 ablation also impaired metabolism, but it was not clear whether this was a cause or consequence of heart failure. Previous in vitro studies revealed that Ca2+ flux into the mitochondria helps pace oxidative metabolism, but there is limited in vivo evidence supporting this concept. Here, we studied heart-specific, inducible Ryr2 haploinsufficient (cRyr2Δ50) mice with a stable 50% reduction in Ryr2 protein. This manipulation decreased the amplitude and frequency of cytosolic and mitochondrial Ca2+ signals in isolated cardiomyocytes, without changes in cardiomyocyte contraction. Remarkably, in the context of well preserved contractile function in perfused hearts, we observed decreased glucose oxidation, but not fat oxidation, with increased glycolysis. cRyr2Δ50 hearts exhibited hyperphosphorylation and inhibition of pyruvate dehydrogenase, the key Ca2+-sensitive gatekeeper to glucose oxidation. Metabolomic, proteomic, and transcriptomic analyses revealed additional functional networks associated with altered metabolism in this model. These results demonstrate that Ryr2 controls mitochondrial Ca2+ dynamics and plays a specific, critical role in promoting glucose oxidation in cardiomyocytes. Our findings indicate that partial RYR2 loss is sufficient to cause metabolic abnormalities seen in heart disease.


Assuntos
Sinalização do Cálcio , Glucose/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Deleção de Genes , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Proteoma , Piruvatos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
2.
J Biol Chem ; 288(26): 18975-86, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23678000

RESUMO

Ca(2+) fluxes between adjacent organelles are thought to control many cellular processes, including metabolism and cell survival. In vitro evidence has been presented that constitutive Ca(2+) flux from intracellular stores into mitochondria is required for basal cellular metabolism, but these observations have not been made in vivo. We report that controlled in vivo depletion of cardiac RYR2, using a conditional gene knock-out strategy (cRyr2KO mice), is sufficient to reduce mitochondrial Ca(2+) and oxidative metabolism, and to establish a pseudohypoxic state with increased autophagy. Dramatic metabolic reprogramming was evident at the transcriptional level via Sirt1/Foxo1/Pgc1α, Atf3, and Klf15 gene networks. Ryr2 loss also induced a non-apoptotic form of programmed cell death associated with increased calpain-10 but not caspase-3 activation or endoplasmic reticulum stress. Remarkably, cRyr2KO mice rapidly exhibited many of the structural, metabolic, and molecular characteristics of heart failure at a time when RYR2 protein was reduced 50%, a similar degree to that which has been reported in heart failure. RYR2-mediated Ca(2+) fluxes are therefore proximal controllers of mitochondrial Ca(2+), ATP levels, and a cascade of transcription factors controlling metabolism and survival.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Alelos , Animais , Apoptose , Autofagia , Morte Celular , Sobrevivência Celular , Retículo Endoplasmático/metabolismo , Hipóxia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transcrição Gênica
3.
Diabetes ; 62(1): 170-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22933114

RESUMO

B-cell lymphoma 2 (Bcl-2) family proteins are established regulators of cell survival, but their involvement in the normal function of primary cells has only recently begun to receive attention. In this study, we demonstrate that chemical and genetic loss-of-function of antiapoptotic Bcl-2 and Bcl-x(L) significantly augments glucose-dependent metabolic and Ca(2+) signals in primary pancreatic ß-cells. Antagonism of Bcl-2/Bcl-x(L) by two distinct small-molecule compounds rapidly hyperpolarized ß-cell mitochondria, increased cytosolic Ca(2+), and stimulated insulin release via the ATP-dependent pathway in ß-cell under substimulatory glucose conditions. Experiments with single and double Bax-Bak knockout ß-cells established that this occurred independently of these proapoptotic binding partners. Pancreatic ß-cells from Bcl-2(-/-) mice responded to glucose with significantly increased NAD(P)H levels and cytosolic Ca(2+) signals, as well as significantly augmented insulin secretion. Inducible deletion of Bcl-x(L) in adult mouse ß-cells also increased glucose-stimulated NAD(P)H and Ca(2+) responses and resulted in an improvement of in vivo glucose tolerance in the conditional Bcl-x(L) knockout animals. Our work suggests that prosurvival Bcl proteins normally dampen the ß-cell response to glucose and thus reveals these core apoptosis proteins as integrators of cell death and physiology in pancreatic ß-cells.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Transdução de Sinais/fisiologia , Proteína bcl-X/fisiologia , Animais , Apoptose , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Canais KATP/fisiologia , Camundongos , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia
4.
Cardiovasc Res ; 96(3): 372-80, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22869620

RESUMO

AIMS: The molecular mechanisms controlling heart function and rhythmicity are incompletely understood. While it is widely accepted that the type 2 ryanodine receptor (Ryr2) is the major Ca(2+) release channel in excitation-contraction coupling, the role of these channels in setting a consistent beating rate remains controversial. Gain-of-function RYR2 mutations in humans and genetically engineered mouse models are known to cause Ca(2+) leak, arrhythmias, and sudden cardiac death. Embryonic stem-cell derived cardiomyocytes lacking Ryr2 display slower beating rates, but no supporting in vivo evidence has been presented. The aim of the present study was to test the hypothesis that RYR2 loss-of-function would reduce heart rate and rhythmicity in vivo. METHODS AND RESULTS: We generated inducible, tissue-specific Ryr2 knockout mice with acute ∼50% loss of RYR2 protein in the heart but not in other tissues. Echocardiography, working heart perfusion, and in vivo ECG telemetry demonstrated that deletion of Ryr2 was sufficient to cause bradycardia and arrhythmia. Our results also show that cardiac Ryr2 knockout mice exhibit functional and structural hallmarks of heart failure, including sudden cardiac death. CONCLUSION: These results illustrate that the RYR2 channel plays an essential role in pacing heart rate. Moreover, we find that RYR2 loss-of-function can lead to fatal arrhythmias typically associated with gain-of-function mutations. Given that RYR2 levels can be reduced in pathological conditions, including heart failure and diabetic cardiomyopathy, we predict that RYR2 loss contributes to disease-associated bradycardia, arrhythmia, and sudden death.


Assuntos
Arritmias Cardíacas/metabolismo , Relógios Biológicos , Frequência Cardíaca , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Débito Cardíaco , Morte Súbita Cardíaca/etiologia , Regulação para Baixo , Eletrocardiografia Ambulatorial/métodos , Acoplamento Excitação-Contração , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Telemetria , Fatores de Tempo , Ultrassonografia , Função Ventricular
5.
JACC Cardiovasc Interv ; 5(5): 582-590, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22625199

RESUMO

OBJECTIVES: This study sought to report on the pathology of transcatheter aortic valves explanted at early and late time points after transcatheter aortic valve implantation. BACKGROUND: Information on pathological findings following transcatheter aortic valve implantation is scarce, particularly late after transcatheter aortic valve implantation. METHODS: This study included 20 patients (13 men, median age 80 years [interquartile range: 72 to 84] years) with previous transcatheter aortic valve implantation with a valve explanted at autopsy (n = 17) or surgery (n = 3) up to 30 months after implantation (10 transapical and 10 transfemoral procedures). RESULTS: Structural valve degeneration was not seen, although fibrous tissue ingrowth was observed at later time points with minimal effects on cusp mobility in 1 case. Minor alterations in valve configuration or placement were observed in up to 50% of cases, but they were not accompanied by substantial changes in valve function or reliably associated with chest compressions. Vascular or myocardial injury was common, especially within 30 days of transcatheter aortic valve implantation (about 69%), with the latter associated with left coronary ostial occlusion by calcified native aortic valve tissue in 2 cases. Mild to severe myocardial amyloidosis was present in nearly 33% of cases and likely played a role in the poor outcome of 3 patients. Endocarditis, migration of the valve, and embolization during the procedure led to surgical valve removal. CONCLUSIONS: Structural degeneration was not seen and minor alterations of valve configuration or placement did not affect valve function and were not reliably caused by chest compressions. Vascular or myocardial injury is very common early after transcatheter aortic valve implantation and myocardial amyloidosis represents a relatively frequent potentially significant comorbid condition.


Assuntos
Estenose da Valva Aórtica/terapia , Cateterismo Cardíaco/efeitos adversos , Doenças Cardiovasculares/etiologia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Amiloidose/etiologia , Amiloidose/patologia , Valva Aórtica/patologia , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/mortalidade , Autopsia , Colúmbia Britânica , Cateterismo Cardíaco/mortalidade , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/cirurgia , Causas de Morte , Remoção de Dispositivo , Endocardite/etiologia , Endocardite/patologia , Feminino , Migração de Corpo Estranho/etiologia , Migração de Corpo Estranho/patologia , Implante de Prótese de Valva Cardíaca/métodos , Implante de Prótese de Valva Cardíaca/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Fatores de Tempo , Resultado do Tratamento
6.
Cardiovasc Pathol ; 21(1): 28-38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21296596

RESUMO

BACKGROUND: Granzyme B, a proapoptotic serine protease, is abundant in advanced, unstable atherosclerotic plaques, and it is suggested to contribute to plaque instability by inducing vascular smooth muscle cells apoptosis and by degrading plaque extracellular matrix. Proteinase inhibitor 9, the only known endogenous inhibitor of granzyme B in humans, confers protection against granzyme-B-induced apoptosis. However, the role of proteinase inhibitor 9 in atherosclerotic lesion development has yet to be determined. We hypothesized that atherosclerotic lesions have lower proteinase inhibitor 9 expression levels that will increase their susceptibility to granzyme-B-induced apoptosis. METHODS: Serial sections of human coronary arteries exhibiting different stages of lesion development were assessed by immunohistochemistry for proteinase inhibitor 9, α-smooth muscle cells actin, granzyme B, CD8, and active caspase-3. Frozen samples were analyzed by Western blot to evaluate total proteinase inhibitor 9 levels. RESULTS: Vascular smooth muscle cells express less proteinase inhibitor 9 as disease severity increases, and a significant difference in proteinase inhibitor 9 expression is observed between medial and intimal smooth muscle cells. High granzyme B levels colocalize with CD8+ cells and foam cells in the shoulder region and necrotic core area of advanced lesions. In advanced lesions, increased expression of activated caspase-3 in intimal SMC was associated with reduced proteinase inhibitor 9 expression in the presence of granzyme B. CONCLUSION: Reduced proteinase inhibitor 9 expression in human vascular smooth muscle cells is associated with atherosclerotic disease progression and is inversely related to the extent of apoptosis within the intima. Reduced proteinase inhibitor 9 expression may contribute to increased smooth muscle cell susceptibility to granzyme-B-induced apoptosis within the plaque.


Assuntos
Aterosclerose/patologia , Vasos Coronários/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Serpinas/metabolismo , Actinas/metabolismo , Apoptose , Aterosclerose/metabolismo , Biomarcadores/metabolismo , Western Blotting , Antígenos CD8/metabolismo , Caspase 3/metabolismo , Vasos Coronários/metabolismo , Progressão da Doença , Granzimas/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Túnica Média/metabolismo , Túnica Média/patologia
7.
Eur J Pharmacol ; 657(1-3): 117-25, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21296063

RESUMO

We have previously shown that metoprolol improves function in the diabetic heart, associated with inhibition of fatty acid oxidation and a shift towards protein kinase B signaling. The aim of this study was to determine the relative importance of these metabolic and signaling effects to the prevention of cellular damage. Diabetes was induced in male Wistar rats by a single IV injection of 60mg/kg streptozotocin, and treated groups received 15mg/kg/day metoprolol delivered subcutaneously by osmotic pumps. Echocardiography was performed 6weeks after streptozotocin injection, and the hearts immediately excised for histological and biochemical measurements of lipotoxicity, apoptosis, signaling and caveolin/caspase interactions. Metoprolol improved stroke volume and cardiac output, associated with attenuation of TUNEL staining and a more modest attenuation of caspase-3; however, the positive TUNEL staining was not associated with an increase in apoptosis or cell regeneration markers. Metoprolol inhibited CPT-1 without affecting CD36 translocation, associated with increased accumulation of triglycerides and long chain acyl CoA in the cytoplasm, and no effect on oxidative stress. Metoprolol induced a shift from protein kinase A to protein kinase B-mediated signaling, associated with a shift in the phosphorylation patterns of BCl-2 and Bad which favored BCl-2 action. Metoprolol also increased the interaction of activated caspase-3 with caveolins 1 and 3 outside caveolae. The actions of metoprolol on fatty acid oxidation do not prevent lipotoxicity; its beneficial effect is more likely to be due to pro-survival signaling and sequestration of activated caspase-3 by caveolins.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Morte Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Coração/efeitos dos fármacos , Metoprolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Caveolinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/toxicidade , Fibrose/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Proteína de Morte Celular Associada a bcl/metabolismo
8.
Cardiovasc Pathol ; 20(5): e197-201, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21081277

RESUMO

Primary cardiac angiosarcoma is a rare neoplasm and the epithelioid variant is exceedingly rare. We report a case of an epithelioid angiosarcoma that involved the right atrium and aorta of a 47-year-old male. The patient presented with atrial fibrillation and presyncopal spells. Following clinical evaluation, including computed tomography scan and trans-esophageal echocardiography, the neoplasm was surgically removed. It was a poorly differentiated malignant neoplasm composed of medium-sized epithelioid cells with a moderate amount of amphophilic cytoplasm. Immunohistochemical staining, including positive staining for CK22, AE1/AE3, melan-A, vimentin, and CD31, indicated the neoplasm was best categorized as an epithelioid angiosarcoma.


Assuntos
Células Epitelioides/patologia , Neoplasias Cardíacas/patologia , Hemangiossarcoma/patologia , Aorta Abdominal/patologia , Aorta Abdominal/cirurgia , Fibrilação Atrial/etiologia , Fibrilação Atrial/patologia , Biomarcadores Tumorais/metabolismo , Terapia Combinada , Ecocardiografia Transesofagiana , Células Epitelioides/metabolismo , Evolução Fatal , Átrios do Coração/patologia , Átrios do Coração/cirurgia , Neoplasias Cardíacas/complicações , Neoplasias Cardíacas/metabolismo , Neoplasias Cardíacas/terapia , Hemangiossarcoma/complicações , Hemangiossarcoma/metabolismo , Hemangiossarcoma/terapia , Humanos , Masculino , Pessoa de Meia-Idade
9.
Mol Cell Biochem ; 337(1-2): 223-37, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19862603

RESUMO

We have previously shown that metoprolol can inhibit carnitine palmitoyltransferase-1 catalytic activity and decrease its malonyl CoA sensitivity within 30 min, suggesting the importance of a covalent modification. The aim of this study was to characterize the effects of PTMs on CPT-1 in the heart. Mitochondria were isolated from the hearts of male Wistar rats and incubated with kinases of interest (protein kinase A, CAMK-II, p38 MAPK, Akt) or with peroxynitrite and sodium nitroprusside. PKA decreased CPT-1 malonyl CoA sensitivity, associated with phosphorylation of CPT-1A, whereas CAMK-II increased malonyl CoA sensitivity by phosphorylating CPT-1B. p38 bound to CPT-1B and stimulated CPT-1 activity. The association of CPT-1 with these kinases and their scaffolding proteins was confirmed in co-localization studies. Peroxynitrite and sodium nitroprusside reversibly stimulated CPT-1 activity, and the change in CPT-1B activity was most consistently associated with glutathiolation of CPT-1B. These studies have identified a new regulatory system of kinases, scaffolding proteins and thiol redox chemistry which can control cardiac CPT-1 in vitro.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Ácido Peroxinitroso/farmacologia , Proteínas Quinases/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Fracionamento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Malonil Coenzima A/metabolismo , Mitocôndrias Cardíacas/enzimologia , Nitroprussiato/farmacologia , Proteína Oncogênica v-akt/metabolismo , Proteína Oncogênica v-akt/farmacologia , Proteína Oncogênica v-akt/fisiologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Ratos , Ratos Wistar , Distribuição Tecidual , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
10.
Am J Pathol ; 176(2): 1038-49, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20035050

RESUMO

Granzyme B (GZMB) is a serine protease that is abundantly expressed in advanced human atherosclerotic lesions and may contribute to plaque instability. Perforin is a pore-forming protein that facilitates GZMB internalization and the induction of apoptosis. Recently a perforin-independent, extracellular role for GZMB has been proposed. In the current study, the role of GZMB in abdominal aortic aneurysm (AAA) was assessed. Apolipoprotein E (APOE)(-/-) x GZMB(-/-) and APOE(-/-) x perforin(-/-) double knockout (GDKO, PDKO) mice were generated to test whether GZMB exerted a causative role in aneurysm formation. To induce aneurysm, mice were given angiotensin II (1000 ng/kg/min) for 28 days. GZMB was found to be abundant in both murine and human AAA specimens. GZMB deficiency was associated with a decrease in AAA and increased survival compared with APOE-KO and PDKO mice. Although AAA rupture was observed frequently in APOE-KO (46.7%; n = 15) and PDKO (43.3%; n = 16) mice, rupture was rarely observed in GDKO (7.1%; n = 14) mice. APOE-KO mice exhibited reduced fibrillin-1 staining compared with GDKO mice, whereas in vitro protease assays demonstrated that fibrillin-1 is a substrate of GZMB. As perforin deficiency did not affect the outcome, our results suggest that GZMB contributes to AAA pathogenesis via a perforin-independent mechanism involving extracellular matrix degradation and subsequent loss of vessel wall integrity.


Assuntos
Aneurisma da Aorta Abdominal/genética , Granzimas/metabolismo , Perforina/fisiologia , Angiotensina II/farmacologia , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/mortalidade , Apolipoproteínas E/genética , Espaço Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Granzimas/genética , Granzimas/fisiologia , Humanos , Sistema Imunitário/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Perforina/genética , Perforina/metabolismo , Processamento de Proteína Pós-Traducional/genética , Distribuição Tecidual
11.
Circ Cardiovasc Genet ; 2(5): 457-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20031621

RESUMO

BACKGROUND: Humans with an R302Q mutation in AMPKgamma(2) (the PRKAG2 gene) develop a glycogen storage cardiomyopathy characterized by a familial form of Wolff-Parkinson-White syndrome and cardiac hypertrophy. This phenotype is recapitulated in transgenic mice with cardiomyocyte-restricted expression of AMPKgamma(2)R302Q. Although considerable information is known regarding the consequences of harboring the gamma(2)R302Q mutation, little is known about the early signaling events that contribute to the development of this cardiomyopathy. METHODS AND RESULTS: To distinguish the direct effects of gamma(2)R302Q expression from later compensatory alterations in signaling, we used transgenic mice expressing either the wild-type AMPKgamma(2) subunit (TGgamma(2)WT) or the mutated form (TGgamma(2)R302Q), in combination with acute expression of these proteins in neonatal rat cardiomyocytes. Although acute expression of gamma(2)R302Q induces AMPK activation and upregulation of glycogen synthase and AS160, with an associated increase in glycogen content, AMPK activity, glycogen synthase activity, and AS160 expression are reduced in hearts from TGgamma(2)R302Q mice, likely in response to the existing 37-fold increase in glycogen. Interestingly, gamma(2)WT expression has similar, yet less marked effects than gamma(2)R302Q expression in both cardiomyocytes and hearts. CONCLUSIONS: Using acute and chronic models of gamma(2)R302Q expression, we have differentiated the direct effects of the gamma(2)R302Q mutation from eventual compensatory modifications. Our data suggest that expression of gamma(2)R302Q induces AMPK activation and the eventual increase in glycogen content, a finding that is masked in hearts from transgenic adult mice. These findings are the first to highlight temporal differences in the effects of the PRKAG2 R302Q mutation on cardiac metabolic signaling events.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Expressão Gênica , Glicogênio/metabolismo , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Síndrome de Wolff-Parkinson-White/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Síndrome de Wolff-Parkinson-White/genética
12.
Eur J Pharmacol ; 617(1-3): 113-7, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19573526

RESUMO

Leptin has previously been shown to stimulate fatty acid oxidation independent of AMP-activated protein kinase (AMPK). Nitric oxide and p38 mitogen activated protein kinase (MAPK) are known effectors of leptin signaling. The aim of the present study was to determine whether nitric oxide and p38 MAPK mediate the stimulation of leptin by MAPK. Hearts from male Sprague-Dawley rats were mounted on the isolated perfused working heart in the presence or absence of leptin (1.9 nM), N-Nitro-L-Arginine Methyl Ester (L-NAME) (3 microM), the specific p38 MAPK inhibitor 4-[4-(4-Fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl] phenol (SB202190, 2 microM) and the specific STAT-3 inhibitor (E)-2-Cyano-3-(3,4-dihydrophenyl)-N-(phenylmethyl)-2-propenamide (AG490, 5 microM) for the measurement of substrate metabolism and function. AMPK and carnitine palimitoyltransferase-1 activity, nitrate/nitrite levels, STAT-3 phosphorylation and p38 MAPK phosphorylation were measured. To assess mitochondrial function, hearts were perfused with or without leptin prior to the isolation of mitochondria. Leptin stimulated fatty acid oxidation and decreased cardiac function, associated with the activation of STAT-3 and p38 MAPK and an increase in tissue nitrate/nitrite levels; the effect on function was ameliorated and the effect on fatty acid oxidation was prevented by L-NAME, B202190 and AG490. L-NAME lowered tissue nitrate/nitrite levels, and prevented the phosphorylation of p38, whereas SB202190 had no effect on tissue nitrate/nitrite levels. AG490 also lowered tissue nitrate/nitrite levels. Leptin had no effect on fatty acid-dependent mitochondrial respiration or uncoupling activity, but, surprisingly, stimulated pyruvate-dependent mitochondrial respiration. These data indicate that leptin stimulates fatty acid oxidation by a STAT-3-nitric oxide-p38 MAPK-dependent mechanism. The target of the pathway is upstream of the mitochondria.


Assuntos
Ácidos Graxos/metabolismo , Coração/efeitos dos fármacos , Leptina/farmacologia , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Glucose/metabolismo , Técnicas In Vitro , Ácido Láctico/biossíntese , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 296(6): H1822-32, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19376807

RESUMO

Substrate use switches from fatty acids toward glucose in pressure overload-induced cardiac hypertrophy with an acceleration of glycolysis being characteristic. The activation of AMP-activated protein kinase (AMPK) observed in hypertrophied hearts provides one potential mechanism for the acceleration of glycolysis. Here, we directly tested the hypothesis that AMPK causes the acceleration of glycolysis in hypertrophied heart muscle cells. The H9c2 cell line, derived from the embryonic rat heart, was treated with arginine vasopressin (AVP; 1 microM) to induce a cellular model of hypertrophy. Rates of glycolysis and oxidation of glucose and palmitate were measured in nonhypertrophied and hypertrophied H9c2 cells, and the effects of inhibition of AMPK were determined. AMPK activity was inhibited by 6-[4-(2-piperidin-1- yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrrazolo-[1,5-a]pyrimidine (compound C) or by adenovirus-mediated transfer of dominant negative AMPK. Compared with nonhypertrophied cells, glycolysis was accelerated and palmitate oxidation was reduced with no significant alteration in glucose oxidation in hypertrophied cells, a metabolic profile similar to that of intact hypertrophied hearts. Inhibition of AMPK resulted in the partial reduction of glycolysis in AVP-treated hypertrophied H9c2 cells. Acute exposure of H9c2 cells to AVP also activated AMPK and accelerated glycolysis. These elevated rates of glycolysis were not altered by AMPK inhibition but were blocked by agents that interfere with Ca(2+) signaling, including extracellular EGTA, dantrolene, and 2-aminoethoxydiphenyl borate. We conclude that the acceleration of glycolysis in AVP-treated hypertrophied heart muscle cells is partially dependent on AMPK, whereas the acute glycolytic effects of AVP are AMPK independent and at least partially Ca(2+) dependent.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Arginina Vasopressina/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/enzimologia , Vasoconstritores/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Animais , Arginina Vasopressina/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/fisiologia , Cálcio/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/fisiologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Vasoconstritores/farmacologia
15.
Eur J Pharmacol ; 607(1-3): 156-66, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19233164

RESUMO

We have previously shown that metoprolol decreases carnitine palmitoyltransferase-1 (CPT-1) activity, a mechanism which may partly explain its beneficial effects in heart failure. It is possible that this effect occurs as a result of repression of cardiac CPT-1B expression. CPT-1B is induced by the transcription factors peroxisome proliferator activated receptor-alpha (PPAR-alpha) and PPAR-gamma-coactivator 1alpha (PGC1alpha) and repressed by upstream stimulatory factor-2 (USF-2). We therefore hypothesized that metoprolol represses CPT-1B by increasing USF-2-mediated repression of PGC1alpha. Male Wistar Rats were divided into 4 groups: control, control treated with metoprolol for 5 weeks, diabetic and diabetic treated with metoprolol for 5 weeks. After termination, the expression of CPT-1 isoforms, PPAR-alpha, PGC1alpha USF-1 and USF-2, as well as downstream targets were measured. Binding of PPAR-alpha, PGC1alpha and USF-2 to PGC1alpha was measured using coimmunoprecipitation. The occupation of PPAR-alpha and MEF-2A consensus sites in the CPT-1B promoter was measured using chromatin immunoprecipitation assays. Chronic metoprolol treatment decreased the expression of CPT-1B in diabetic hearts. The expression of USF-2 was increased by metoprolol in both control and diabetic hearts, but the association of USF-2 with PGC1alpha was increased by metoprolol only in diabetic hearts. Metoprolol prevented the increase in PGC1alpha occupation of the CPT-1B promoter region observed in the diabetic heart without affecting PPAR-alpha occupation. Metoprolol decreases CPT-1B expression by decreasing PGC1alpha-mediated coactivation of PPAR-alpha and MEF-2A. This is associated with increased PGC1alpha/ USF-2 binding, suggesting that USF-2 mediates the metoprolol-induced repression of PGC1alpha.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carnitina O-Palmitoiltransferase/efeitos dos fármacos , Diabetes Mellitus Experimental/fisiopatologia , Metoprolol/farmacologia , Antagonistas Adrenérgicos beta/administração & dosagem , Animais , Carnitina O-Palmitoiltransferase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Imunoprecipitação/métodos , Proteínas de Domínio MADS/efeitos dos fármacos , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Masculino , Metoprolol/administração & dosagem , Fatores de Regulação Miogênica/efeitos dos fármacos , Fatores de Regulação Miogênica/metabolismo , PPAR alfa/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Isoformas de Proteínas , Ratos , Ratos Wistar , Fatores de Tempo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores Estimuladores Upstream/efeitos dos fármacos , Fatores Estimuladores Upstream/genética
16.
Eur J Pharmacol ; 595(1-3): 44-51, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18703049

RESUMO

We have previously shown that the beta-blocking drug metoprolol improves cardiac function in the streptozotocin-diabetic rat partly by inducing parallel improvements in cardiac metabolism and gene expression. beta-blockers have been previously reported to increase the expression of beta(1) and beta(2)-adrenoceptors, but their effects on the expression of beta(3)-adrenoceptors are unknown. The aim of the present study was to investigate whether metoprolol increases beta(3)-adrenoceptor expression and downstream Akt-mediated signaling. Left ventricular function was measured in paced isolated working hearts. beta(1), beta(2) and beta(3) adrenoceptor-expression levels were measured using Western blotting. Protein kinase A (PKA) and calcium/calmodulin dependent protein kinase II (CAMK-II) activities, as well as Akt phosphorylation, were measured as indices of downstream target activation. Chronic metoprolol treatment improved cardiac function and produced a marked increase in the expression of all three beta-adrenoceptor subtypes which was associated with a decrease in PKA activity and an increase in Akt phosphorylation. Akt-mediated phosphorylation of endothelial nitric oxide synthase (eNOS) was not altered, but phosphorylation of the transcription factor FOXO-3 was increased. Metoprolol increased the expression of beta(1), beta(2) and beta(3) adrenoceptors, associated with repression of FOXO-3 expression. beta-adrenoceptor signaling shifted from PKA to Akt-mediated signaling, associated with phosphorylation of FOXO-3 but not eNOS.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Fatores de Transcrição Forkhead/metabolismo , Metoprolol/farmacologia , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Receptores Adrenérgicos beta 3/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Proteína Forkhead Box O3 , Masculino , Miocárdio/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 1/efeitos dos fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Regulação para Cima , Função Ventricular Esquerda/efeitos dos fármacos
17.
Am J Physiol Heart Circ Physiol ; 294(6): H2497-506, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18375721

RESUMO

The metabolic actions of the antidiabetic agent metformin reportedly occur via the activation of the AMP-activated protein kinase (AMPK) in the heart and other tissues in the presence or absence of changes in cellular energy status. In this study, we tested the hypothesis that metformin has AMPK-independent effects on metabolism in heart muscle. Fatty acid oxidation and glucose utilization (glycolysis and glucose uptake) were measured in isolated working hearts from halothane-anesthetized male Sprague-Dawley rats and in cultured heart-derived H9c2 cells in the absence or in the presence of metformin (2 mM). Fatty acid oxidation and glucose utilization were significantly altered by metformin in hearts and H9c2 cells. AMPK activity was not measurably altered by metformin in either model system, and no impairment of energetic state was observed in the intact hearts. Furthermore, the inhibition of AMPK by 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyyrazolo[1,5-a] pyrimidine (Compound C), a well-recognized pharmacological inhibitor of AMPK, or the overexpression of a dominant-negative form of AMPK failed to prevent the metabolic actions of metformin in H9c2 cells. The exposure of H9c2 cells to inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) or protein kinase C (PKC) partially or completely abrogated metformin-induced alterations in metabolism in these cells, respectively. Thus the metabolic actions of metformin in the heart muscle can occur independent of changes in AMPK activity and may be mediated by p38 MAPK- and PKC-dependent mechanisms.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Coração/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Miocárdio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP , Nucleotídeos de Adenina/metabolismo , Animais , Débito Cardíaco/efeitos dos fármacos , Linhagem Celular , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Masculino , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Fosfocreatina/metabolismo , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 294(4): H1609-20, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18203848

RESUMO

The effects of diabetes on heart function may be initiated or compounded by the exaggerated reliance of the diabetic heart on fatty acids and ketones as metabolic fuels. beta-Blocking agents such as metoprolol have been proposed to inhibit fatty acid oxidation. We hypothesized that metoprolol would improve cardiac function by inhibiting fatty acid oxidation and promoting a compensatory increase in glucose utilization. We measured ex vivo cardiac function and substrate utilization after chronic metoprolol treatment and acute metoprolol perfusion. Chronic metoprolol treatment attenuated the development of cardiac dysfunction in streptozotocin (STZ)-diabetic rats. After chronic treatment with metoprolol, palmitate oxidation was increased in control hearts but decreased in diabetic hearts without affecting myocardial energetics. Acute treatment with metoprolol during heart perfusions led to reduced rates of palmitate oxidation, stimulation of glucose oxidation, and increased tissue ATP levels. Metoprolol lowered malonyl-CoA levels in control hearts only, but no changes in acetyl-CoA carboxylase phosphorylation or AMP-activated protein kinase activity were observed. Both acute metoprolol perfusion and chronic in vivo metoprolol treatment led to decreased maximum activity and decreased sensitivity of carnitine palmitoyltransferase I to malonyl-CoA. Metoprolol also increased sarco(endo)plasmic reticulum Ca(2+)-ATPase expression and prevented the reexpression of atrial natriuretic peptide in diabetic hearts. These data demonstrate that metoprolol ameliorates diabetic cardiomyopathy and inhibits fatty acid oxidation in streptozotocin-induced diabetes. Since malonyl-CoA levels are not increased, the reduction in total carnitine palmitoyltransferase I activity is the most likely factor to explain the decrease in fatty acid oxidation. The metabolism changes occur in parallel with changes in gene expression.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Metoprolol/farmacologia , Miocárdio/metabolismo , Proteínas Quinases Ativadas por AMP , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Fator Natriurético Atrial/metabolismo , Débito Cardíaco/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Masculino , Malonil Coenzima A/metabolismo , Metoprolol/uso terapêutico , Complexos Multienzimáticos/metabolismo , Miocárdio/enzimologia , Oxirredução , Ácido Palmítico/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ratos , Ratos Wistar , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 293(6): H3456-64, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17906100

RESUMO

Although mutations in the gamma-subunit of AMP-activated protein kinase (AMPK) can result in excessive glycogen accumulation and cardiac hypertrophy, the mechanisms by which this occurs have not been well defined. Because >65% of cardiac AMPK activity is associated with the gamma1-subunit of AMPK, we investigated the effects of expression of an AMPK-activating gamma1-subunit mutant (gamma1 R70Q) on regulatory pathways controlling glycogen accumulation and cardiac hypertrophy in neonatal rat cardiac myocytes. Whereas expression of gamma1 R70Q displayed the expected increase in palmitate oxidation rates, rates of glycolysis were significantly depressed. In addition, glycogen synthase activity was increased in cardiac myocytes expressing gamma1 R70Q, due to both increased expression and decreased phosphorylation of glycogen synthase. The inhibition of glycolysis and increased glycogen synthase activity were correlated with elevated glycogen levels in gamma1 R70Q-expressing myocytes. In association with the reduced phosphorylation of glycogen synthase, glycogen synthase kinase (GSK)-3beta protein and mRNA levels were profoundly decreased in the gamma1 R70Q-expressing myocytes. Consistent with GSK-3beta negatively regulating hypertrophy via inhibition of nuclear factor of activated T cells (NFAT), the dramatic downregulation of GSK-3beta was associated with increased nuclear activity of NFAT. Together, these data provide important new information about the mechanisms by which a mutation in the gamma-subunit of AMPK causes altered AMPK signaling and identify multiple pathways involved in regulating both cardiac myocyte metabolism and growth that may contribute to the development of the gamma mutant-associated cardiomyopathy.


Assuntos
Glicogênio/metabolismo , Complexos Multienzimáticos/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP , Transporte Ativo do Núcleo Celular , Animais , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Tamanho Celular , Células Cultivadas , Glucose/metabolismo , Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Glicólise , Hipertrofia , Complexos Multienzimáticos/genética , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Oxirredução , Ácido Palmítico/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/genética , Transdução Genética
20.
Am J Physiol Heart Circ Physiol ; 292(1): H140-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16920812

RESUMO

Accelerated glycolysis in hypertrophied hearts may be a compensatory response to reduced energy production from long-chain fatty acid oxidation with 5'-AMP-activated protein kinase (AMPK) functioning as a cellular signal. Therefore, we tested the hypothesis that enhanced fatty acid oxidation improves energy status and normalizes AMPK activity and glycolysis in hypertrophied hearts. Glycolysis, fatty acid oxidation, AMPK activity, and energy status were measured in isolated working hypertrophied and control hearts from aortic-constricted and sham-operated male Sprague-Dawley rats. Hearts from halothane (3-4%)-anesthetized rats were perfused with KH solution containing either palmitate, a long-chain fatty acid, or palmitate plus octanoate, a medium-chain fatty acid whose oxidation is not impaired in hypertrophied hearts. Compared with control, fatty acid oxidation was lower in hypertrophied hearts perfused with palmitate, whereas it increased to similar values in both groups with octanoate plus palmitate. Glycolysis was accelerated in palmitate-perfused hypertrophied hearts and was normalized in hypertrophied hearts by the addition of octanoate. AMPK activity was increased three- to sixfold with palmitate alone and was reduced to control values by octanoate plus palmitate. Myocardial energy status improved with the addition of octanoate but did not differ between groups. Our findings, particularly the correspondence between glycolysis and AMPK activity, provide support for the view that activation of AMPK is responsible, in part, for the acceleration of glycolysis in cardiac hypertrophy. Additionally, they indicate myocardial AMPK is activated by energy state-independent mechanisms in response to pressure overload, demonstrating AMPK is more than a sensor of the heart's energy status.


Assuntos
Metabolismo Energético , Ácidos Graxos/metabolismo , Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Adaptação Fisiológica , Animais , Pressão Sanguínea , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...