Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1172, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973843

RESUMO

Bacterial conjugation is a major horizontal gene transfer mechanism. While the functions encoded by many conjugative plasmids have been intensively studied, the contribution of recipient chromosome-encoded genes remains largely unknown. Here, we analyzed the genetic requirement of recipient cells for conjugation of IncI2 plasmid TP114, which was recently shown to transfer at high rates in the gut microbiota. We performed transfer assays with ~4,000 single-gene deletion mutants of Escherichia coli. When conjugation occurs on a solid medium, we observed that recipient genes impairing transfer rates were not associated with a specific cellular function. Conversely, transfer assays performed in broth were largely dependent on the lipopolysaccharide biosynthesis pathway. We further identified specific structures in lipopolysaccharides used as recipient cell surface receptors by PilV adhesins associated with the type IVb accessory pilus of TP114. Our strategy is applicable to study other mobile genetic elements and understand important host cell factors for their dissemination.


Assuntos
Conjugação Genética , Escherichia coli , Plasmídeos/genética , Escherichia coli/metabolismo , Adesinas Bacterianas/genética , Transferência Genética Horizontal
2.
Microbiol Spectr ; 10(2): e0230321, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35293798

RESUMO

Type IV pili (T4P) are common bacterial surface appendages involved in different biological processes such as adherence, motility, competence, pathogenesis, and conjugation. In this work, we describe the T4P of TP114, an IncI2 enterobacterial conjugative plasmid recently shown to disseminate at high rates in the mouse intestinal tract. This pilus is composed of the major PilS and minor PilV pilins that are both important for conjugation in broth and in the gut microbiota but not on a solid support. The PilV-coding sequence is part of a shufflon and can bear different C-terminal domains. The shufflon is a multiple DNA inversion system containing many DNA cassettes flanked by recombination sites that are recognized by a shufflon-specific tyrosine recombinase (shufflase) promoting the recombination between DNA segments. The different PilV variants act as adhesins that can modify the affinity for different recipient bacteria. Eight PilV variants were identified in TP114, including one that has not been described in other shufflons. All PilV variants allowed conjugative transfer with different recipient Escherichia coli strains. We conclude that the T4P carried by TP114 plays a major role in mating pair stabilization in broth as well as in the gut microbiota and that the shufflon acts as a biological switch modifying the conjugative host range specificity. IMPORTANCE Conjugative plasmids are involved in horizontal gene transfer in the gut microbiota, which constitutes an important antibiotic resistance gene reservoir. However, the molecular mechanisms used by conjugative plasmids to select recipient bacteria and transfer at high rates in the mouse gut microbiota remain poorly characterized. We studied the type IV pilus carried by TP114 and demonstrated that the minor pilin PilV acts as an adhesin that can efficiently select target cells for conjugative transfer. Moreover, the pilV gene can be rapidly modified by a shufflon, hence modulating the nature of the recipient bacteria during conjugation. Our study highlights the role of mating pair stabilization for conjugation in broth as well as in the gut microbiome and explains how the host spectrum of a plasmid can be expanded simply by remodeling the PilV adhesin.


Assuntos
Microbioma Gastrointestinal , Adesinas Bacterianas/genética , Animais , Bactérias/genética , Conjugação Genética , DNA , Escherichia coli/genética , Fímbrias Bacterianas/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Camundongos , Plasmídeos/genética
3.
Mol Syst Biol ; 17(10): e10335, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665940

RESUMO

Antibiotic resistance threatens our ability to treat infectious diseases, spurring interest in alternative antimicrobial technologies. The use of bacterial conjugation to deliver CRISPR-cas systems programmed to precisely eliminate antibiotic-resistant bacteria represents a promising approach but requires high in situ DNA transfer rates. We have optimized the transfer efficiency of conjugative plasmid TP114 using accelerated laboratory evolution. We hence generated a potent conjugative delivery vehicle for CRISPR-cas9 that can eliminate > 99.9% of targeted antibiotic-resistant Escherichia coli in the mouse gut microbiota using a single dose. We then applied this system to a Citrobacter rodentium infection model, achieving full clearance within four consecutive days of treatment.


Assuntos
Microbiota , Probióticos , Animais , Sistemas CRISPR-Cas/genética , Conjugação Genética , Edição de Genes , Camundongos
4.
Front Microbiol ; 12: 673260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149661

RESUMO

Bacterial conjugation is a widespread and particularly efficient strategy to horizontally disseminate genes in microbial populations. With a rich and dense population of microorganisms, the intestinal microbiota is often considered a fertile environment for conjugative transfer and a major reservoir of antibiotic resistance genes. In this mini-review, we summarize recent findings suggesting that few conjugative plasmid families present in Enterobacteriaceae transfer at high rates in the gut microbiota. We discuss the importance of mating pair stabilization as well as additional factors influencing DNA transfer efficiency and conjugative host range in this environment. Finally, we examine the potential repurposing of bacterial conjugation for microbiome editing.

5.
Commun Biol ; 3(1): 523, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963323

RESUMO

The gut microbiota is a suspected hotspot for bacterial conjugation due to its high density and diversity of microorganisms. However, the contribution of different conjugative plasmid families to horizontal gene transfer in this environment remains poorly characterized. Here, we systematically quantified the transfer rates in the mouse intestinal tract for 13 conjugative plasmids encompassing 10 major incompatibility groups. The vast majority of these plasmids were unable to perform conjugation in situ or only reached relatively low transfer rates. Surprisingly, IncI2 conjugative plasmid TP114 was identified as a proficient DNA delivery system in this environment, with the ability to transfer to virtually 100% of the probed recipient bacteria. We also show that a type IV pilus present in I-complex conjugative plasmids plays a crucial role for the transfer of TP114 in the mouse intestinal microbiota, most likely by contributing to mating pair stabilization. These results provide new insights on the mobility of genes in the gut microbiota and highlights TP114 as a very efficient DNA delivery system of interest for microbiome editing tools.


Assuntos
Conjugação Genética/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética , Animais , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Enterobacteriaceae/genética , Escherichia coli/genética , Feminino , Biblioteca Gênica , Genes Bacterianos/genética , Camundongos , Camundongos Endogâmicos C57BL
6.
Plasmid ; 104: 102419, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31247227

RESUMO

There is an important need to develop new therapeutic tools to modulate the gene content of microbiomes. A potential strategy for microbiome engineering relies on the delivery of genetic payloads by conjugative plasmids. Yet, the introduction of large DNA molecules in conjugative plasmids can be challenging. Here, we describe the Double Recombinase Operated Insertion of DNA (DROID), an efficient method to assemble large DNA molecules without introducing antibiotic resistance genes or other unwanted sequences in the final construct. We exemplify this method by demonstrating that the Bxb1 integrase and FLP recombinase can be used successively to stably insert a relatively large DNA cargo consisting of a CRISPR-Cas9 system in a conjugative plasmid. We further show that the resulting CRISPR-Cas9 mobilization system was able to cure a multi-copy antibiotic resistance plasmid in a target bacterium. In addition to its utility for DNA payload integration in conjugative plasmids, the DROID method could readily be adapted to a multitude of other applications that require the manipulation of large DNA molecules.


Assuntos
Elementos de DNA Transponíveis , Mutagênese Insercional , Recombinases/metabolismo , Sistemas CRISPR-Cas , Conjugação Genética
7.
Can J Microbiol ; 61(8): 565-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26166710

RESUMO

Considering the medical, biotechnological, and economical importance of actinobacteria, there is a continuous need to improve the tools for genetic engineering of a broad range of these microorganisms. Intergeneric conjugation has proven to be a valuable yet imperfect tool for this purpose. The natural resistance of many actinomycetes to nalidixic acid (Nal) is generally exploited to eliminate the sensitive Escherichia coli donor strain following conjugation. Nevertheless, Nal can delay growth and have other unexpected effects on the recipient strain. To provide an improved alternative to antibiotics, we propose a postconjugational counterselection using a diaminopimelic acid (DAP) auxotrophic donor strain. The DAP-negative phenotype was obtained by introducing a dapA deletion into the popular methylase-negative donor strain E. coli ET12567/pUZ8002. The viability of ET12567 and its ΔdapA mutant exposed to DAP deprivation or Nal selection were compared in liquid pure culture and after mating with Streptomyces coelicolor. Results showed that death of the E. coli ΔdapA Nal-sensitive donor strain occurred more efficiently when subjected to DAP deprivation than when exposed to Nal. Our study shows that postconjugational counterselection based on DAP deprivation circumvents the use of antibiotics and will facilitate the transfer of plasmids into actinomycetes with high biotechnological potential, yet currently not accessible to conjugative techniques.


Assuntos
Actinobacteria/genética , Conjugação Genética , Ácido Diaminopimélico/metabolismo , Escherichia coli/genética , Antibacterianos/metabolismo , Escherichia coli/metabolismo , Ácido Nalidíxico/metabolismo
8.
Cell Commun Signal ; 12: 2, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405902

RESUMO

BACKGROUND: Immune responses are generally impaired in aged mammals. T cells have been extensively studied in this context due to the initial discovery of their reduced proliferative capacity with aging. The decreased responses involve altered signaling events associated with the early steps of T cell activation. The underlying causes of these changes are not fully understood but point to alterations in assembly of the machinery for T cell activation. Here, we have tested the hypothesis that the T cell pool in elderly subjects displayed reduced functional capacities due to altered negative feedback mechanisms that participate in the regulation of the early steps of T cell activation. Such conditions tip the immune balance in favor of altered T cell activation and a related decreased response in aging. RESULTS: We present evidence that the tyrosine phosphatase SHP-1, a key regulator of T cell signal transduction machinery is, at least in part, responsible for the impaired T cell activation in aging. We used tyrosine-specific mAbs and Western blot analysis to show that a deregulation of the Csk/PAG loop in activated T cells from elderly individuals favored the inactive form of tyrosine-phosphorylated Lck (Y505). Confocal microscopy analysis revealed that the dynamic movements of these regulatory proteins in lipid raft microdomains was altered in T cells of aged individuals. Enzymic assays showed that SHP-1 activity was upregulated in T cells of aged donors, in contrast to young subjects. Pharmacological inhibition of SHP-1 resulted in recovery of TCR/CD28-dependent lymphocyte proliferation and IL-2 production of aged individuals to levels approaching those of young donors. Significant differences in the active (Y394) and inactive (Y505) phosphorylation sites of Lck in response to T cell activation were observed in elderly donors as compared to young subjects, independently of CD45 isoform expression. CONCLUSIONS: Our data suggest that the role of SHP-1 in T cell activation extends to its increased effect in negative feedback in aging. Modulation of SHP-1 activity could be a target to restore altered T cell functions in aging. These observations could have far reaching consequences for improvement of immunosenescence and its clinical consequences such as infections, altered response to vaccination.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Linfócitos T/imunologia , Adulto , Fatores Etários , Idoso , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Humanos , Interleucina-2/genética , Interleucina-2/metabolismo , Ativação Linfocitária , Microdomínios da Membrana/metabolismo , Mutação , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Pirimidinas/farmacologia , Linfócitos T/enzimologia , Linfócitos T/metabolismo
9.
Biol Reprod ; 87(4): 94, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22875906

RESUMO

Previously, we showed that epididymal sperm binding protein 1 (ELSPBP1) characterizes spermatozoa already dead before ejaculation in bovine. In this study, we investigated the presence of ELSPBP1 in bull genital tract as well as its acquisition by spermatozoa during epididymal transit. As assessed by real-time RT-PCR, ELSPBP1 was highly expressed in the caput and the corpus epididymis but was present in lower expression levels in the testis and the cauda epididymis. Immunohistochemistry revealed the same expression pattern. However, Western blot on tissue homogenates showed some discrepancies, as ELSPBP1 was found in a comparable concentration all along the epididymis. This difference was due to the presence of ELSPBP1 in the epididymal fluid. In both caput and cauda epididymal fluid, ELSPBP1 was associated with the epididymosomes, small membranous vesicles secreted by epithelial cells of the epididymis and implicated in the transfer of proteins to spermatozoa. As assessed by immunocytometry, ELSPBP1 was found on a subset of dead spermatozoa in caput epididymis but was found on all dead spermatozoa in cauda epididymis. To assess ELSPBP1 acquisition by spermatozoa, caput epididymal spermatozoa were incubated with cauda epididymosomes under various conditions. ELSPBP1 detection by immunocytometry assay revealed that only spermatozoa already dead before incubation were receptive to ELSPBP1 transfer by epididymosomes. This receptivity was enhanced by the presence of zinc in the incubation medium. This specificity for a sperm subpopulation suggests that an underlying mechanism is involved and that ELSPBP1 could be a tag for the recognition of dead spermatozoa during epididymal transit.


Assuntos
Proteínas de Transporte/metabolismo , Bovinos , Epididimo/metabolismo , Vesículas Secretórias/metabolismo , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/metabolismo , Animais , Proteínas de Transporte/genética , Bovinos/metabolismo , Bovinos/fisiologia , Morte Celular , Masculino , Ligação Proteica , Transporte Proteico , Proteínas de Plasma Seminal/genética , Maturação do Esperma/genética , Maturação do Esperma/fisiologia , Espermatozoides/patologia , Espermatozoides/fisiologia , Testículo/metabolismo , Distribuição Tecidual
10.
Biol Reprod ; 83(3): 473-80, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20554923

RESUMO

During their transit along the epididymis, mammalian spermatozoa acquire new proteins that are necessary for their acquisition of forward motility and fertility. By using the bovine model, we previously showed that small membranous vesicles named epididymosomes are secreted in the epididymal intraluminal compartment. Epididymosomes from caput and cauda are different, and interact sequentially with the transiting spermatozoa. In fact, selected proteins of epididymosomes are transferred to different subcompartments of the maturing spermatozoa. In this study, we investigate the possibility that different subpopulations of epididymosomes are present in the caudal portion of the epididymis. Through the use of discontinuous sucrose gradient ultracentrifugation, we isolated two distinct populations that differ in their protein and lipid compositions. Although they have similar diameters, the ultrastructural appearance of these two populations was very different. The low-density (Ld) vesicles are enriched in cholesterol, sphingomyelin, and ganglioside M1, suggesting the existence of detergent-resistant membrane domains or rafts. The high-density (Hd) vesicles show a high protein concentration, including ACTB and VAMP8. When each subpopulation of biotinylated cauda epididymosomes was coincubated with caput spermatozoa, a subset of biotinylated proteins was transferred to the sperm; the Ld and Hd vesicles transferring the same pattern of proteins. In vitro competition assays of protein transferred from Ld or Hd epididymosomes to sperm confirm the similarity in the selected transferred proteins. Electrospray tandem mass spectrometry (ES-MS/MS) analysis of proteins associated with the two populations of vesicles confirm the epididymal origin of some of them, the possible involvement of others in transmembrane signaling systems, and the identification of proteins for which functions in sperm physiology remain to be determined. Mass spectrometry analysis also revealed that ELSPBP1 and GBB2 were transferred from epididymosomes to spermatozoa. Results are discussed with regard to the functions of these two cauda epididymosome populations in sperm physiology.


Assuntos
Epididimo/fisiologia , Maturação do Esperma/fisiologia , Espermatozoides/fisiologia , Animais , Western Blotting , Bovinos , Colesterol/análise , Colesterol/metabolismo , Vesículas Citoplasmáticas/química , Vesículas Citoplasmáticas/metabolismo , Epididimo/ultraestrutura , Masculino , Microscopia Eletrônica , Espermatozoides/ultraestrutura , Esfingomielinas/análise , Esfingomielinas/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...