Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 275(16): 11829-35, 2000 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-10766808

RESUMO

Unlike the GroEL homologs of eubacteria and mitochondria, oligomer preparations of the higher plant chloroplast chaperonin 60 (cpn60) consist of roughly equal amounts of two divergent subunits, alpha and beta. The functional significance of these isoforms, their structural organization into tetradecamers, and their interactions with the unique binary chloroplast chaperonin 10 (cpn10) have not been elucidated. Toward this goal, we have cloned the alpha and beta subunits of the ch-cpn60 of pea (Pisum sativum), expressed them individually in Escherichia coli, and subjected the purified monomers to in vitro reconstitution experiments. In the absence of other factors, neither subunit (alone or in combination) spontaneously assembles into a higher order structure. However, in the presence of MgATP, the beta subunits form tetradecamers in a cooperative reaction that is potentiated by cpn10. In contrast, alpha subunits only assemble in the presence of beta subunits. Although beta and alpha/beta 14-mers are indistinguishable by electron microscopy and can both assist protein folding, their specificities for cpn10 are entirely different. Similar to the authentic chloroplast protein, the reconstituted alpha/beta 14-mers are functionally compatible with bacterial, mitochondrial, and chloroplast cpn10. In contrast, the folding reaction mediated by the reconstituted beta 14-mers is only efficient with mitochondrial cpn10. The ability to reconstitute two types of functional oligomer in vitro provides a unique tool, which will allow us to investigate the mechanism of this unusual chaperonin system.


Assuntos
Chaperonina 60/química , Cloroplastos/química , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Chaperonina 60/genética , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Pisum sativum/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...