Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Cells Mol Dis ; 103: 102780, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37516005

RESUMO

We report here an instructive case referred at 16 months-old for exploration of hemolysis without anemia (compensated anemia with reticulocytosis). The biology tests confirmed the hemolysis with increased total and indirect bilirubin. The usual hemolysis diagnosis tests were normal (DAT, G6PD, PK, Hb electrophoresis) except cytology and ektacytometry suggesting an association of multiple red blood cell (RBC) membrane disorders. This led us to propose a molecular screening analysis using targeted-Next Generation Sequencing (t-NGS) with a capture technique on 93 genes involved in RBC and erythropoiesis defects. We identified 4 missense heterozygous allelic variations, all of them were described without any significance (VUS) in the SLC4A1, RhAG, PIEZO1 and SPTB genes. The study of the familial cosegregation and research functional tests allowed to decipher the role of at least two by two genes in the phenotype and the hemolytic disease of this young patient. Specialized t-NGS panel (or virtual exome/genome sequencing) in a disease-referent laboratory and the motivated collaboration of clinicians, biologists and scientists should be the gold standard for improving the diagnosis of the patients affected with RBC diseases or rare inherited anemias.


Assuntos
Doenças Hematológicas , Esferocitose Hereditária , Humanos , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Espectrina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hemólise , Mutação , Eritrócitos , Fenótipo , Proteína 1 de Troca de Ânion do Eritrócito/genética , Canais Iônicos/genética
2.
Cell Mol Life Sci ; 80(5): 124, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071200

RESUMO

An inherited gain-of-function variant (E756del) in the mechanosensitive cationic channel PIEZO1 was shown to confer a significant protection against severe malaria. Here, we demonstrate in vitro that human red blood cell (RBC) infection by Plasmodium falciparum is prevented by the pharmacological activation of PIEZO1. Yoda1 causes an increase in intracellular calcium associated with rapid echinocytosis that inhibits RBC invasion, without affecting parasite intraerythrocytic growth, division or egress. Notably, Yoda1 treatment significantly decreases merozoite attachment and subsequent RBC deformation. Intracellular Na+/K+ imbalance is unrelated to the mechanism of protection, although delayed RBC dehydration observed in the standard parasite culture medium RPMI/albumax further enhances the resistance to malaria conferred by Yoda1. The chemically unrelated Jedi2 PIEZO1 activator similarly causes echinocytosis and RBC dehydration associated with resistance to malaria invasion. Spiky outward membrane projections are anticipated to reduce the effective surface area required for both merozoite attachment and internalization upon pharmacological activation of PIEZO1. Globally, our findings indicate that the loss of the typical biconcave discoid shape of RBCs, together with an altered optimal surface to volume ratio, induced by PIEZO1 pharmacological activation prevent efficient P. falciparum invasion.


Assuntos
Malária , Parasitos , Animais , Humanos , Plasmodium falciparum , Desidratação/metabolismo , Eritrócitos/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
3.
Gut ; 72(4): 722-735, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36882214

RESUMO

OBJECTIVE: Intercellular communication within pancreatic ductal adenocarcinoma (PDAC) dramatically contributes to metastatic processes. The underlying mechanisms are poorly understood, resulting in a lack of targeted therapy to counteract stromal-induced cancer cell aggressiveness. Here, we investigated whether ion channels, which remain understudied in cancer biology, contribute to intercellular communication in PDAC. DESIGN: We evaluated the effects of conditioned media from patient-derived cancer-associated fibroblasts (CAFs) on electrical features of pancreatic cancer cells (PCC). The molecular mechanisms were deciphered using a combination of electrophysiology, bioinformatics, molecular and biochemistry techniques in cell lines and human samples. An orthotropic mouse model where CAF and PCC were co-injected was used to evaluate tumour growth and metastasis dissemination. Pharmacological studies were carried out in the Pdx1-Cre, Ink4afl/fl LSL-KrasG12D (KICpdx1) mouse model. RESULTS: We report that the K+ channel SK2 expressed in PCC is stimulated by CAF-secreted cues (8.84 vs 2.49 pA/pF) promoting the phosphorylation of the channel through an integrin-epidermal growth factor receptor (EGFR)-AKT (Protein kinase B) axis. SK2 stimulation sets a positive feedback on the signalling pathway, increasing invasiveness in vitro (threefold) and metastasis formation in vivo. The CAF-dependent formation of the signalling hub associating SK2 and AKT requires the sigma-1 receptor chaperone. The pharmacological targeting of Sig-1R abolished CAF-induced activation of SK2, reduced tumour progression and extended the overall survival in mice (11.7 weeks vs 9.5 weeks). CONCLUSION: We establish a new paradigm in which an ion channel shifts the activation level of a signalling pathway in response to stromal cues, opening a new therapeutic window targeting the formation of ion channel-dependent signalling hubs.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Carcinogênese , Transformação Celular Neoplásica , Transdução de Sinais , Neoplasias Pancreáticas
4.
Front Physiol ; 12: 736585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737711

RESUMO

Hereditary Xerocytosis, a rare hemolytic anemia, is due to gain of function mutations in PIEZO1, a non-selective cation channel activated by mechanical stress. How these PIEZO1 mutations impair channel function and alter red blood cell (RBC) physiology, is not completely understood. Here, we report the characterization of mutations in the N-terminal part of the protein (V598M, F681S and the double mutation G782S/R808Q), a part of the channel that was subject of many investigations to decipher its role in channel gating. Our data show that the electrophysiological features of these PIEZO1 mutants expressed in HEK293T cells are different from previously characterized PIEZO1 mutations that are located in the pore or at the C-terminal extracellular domain of the protein. Although RBC with PIEZO1 mutations showed a dehydrated phenotype, the activity of V598M, F681S or R808Q in response to stretch was not significantly different from the WT channels. In contrast, the G782S mutant showed larger currents compared to the WT PIEZO1. Interestingly, basal activity of all the mutated channels was not significantly altered at the opposite of what was expected according to the decreased water and cation contents of resting RBC. In addition, the features of mutant PIEZO1 expressed in HEK293 cells do not always correlate with the observation in RBC where PIEZO1 mutations induced a cation leak associated with an increased conductance. Our work emphasizes the role of the membrane environment in PIEZO1 activity and the need to characterize RBC permeability to assess pathogenicity to PIEZO1 mutants associated with erythrocyte diseases.

5.
J Mol Cell Cardiol ; 158: 49-62, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33974928

RESUMO

AIMS: Atrial Fibrillation (AF) is an arrhythmia of increasing prevalence in the aging populations of developed countries. One of the important indicators of AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to changing mechanical forces, are not fully elucidated. Here, we characterise stretch-activated ion channels (SAC) in human atrial fibroblasts and changes in SAC- presence and activity associated with AF. METHODS AND RESULTS: Using primary cultures of human atrial fibroblasts, isolated from patients in sinus rhythm or sustained AF, we combine electrophysiological, molecular and pharmacological tools to identify SAC. Two electrophysiological SAC- signatures were detected, indicative of cation-nonselective and potassium-selective channels. Using siRNA-mediated knockdown, we identified the cation-nonselective SAC as Piezo1. Biophysical properties of the potassium-selective channel, its sensitivity to calcium, paxilline or iberiotoxin (blockers), and NS11021 (activator), indicated presence of calcium-dependent 'big potassium channels' (BKCa). In cells from AF patients, Piezo1 activity and mRNA expression levels were higher than in cells from sinus rhythm patients, while BKCa activity (but not expression) was downregulated. Both Piezo1-knockdown and removal of extracellular calcium from the patch pipette resulted in a significant reduction of BKCa current during stretch. No co-immunoprecipitation of Piezo1 and BKCa was detected. CONCLUSIONS: Human atrial fibroblasts contain at least two types of ion channels that are activated during stretch: Piezo1 and BKCa. While Piezo1 is directly stretch-activated, the increase in BKCa activity during mechanical stimulation appears to be mainly secondary to calcium influx via SAC such as Piezo1. During sustained AF, Piezo1 is increased, while BKCa activity is reduced, highlighting differential regulation of both channels. Our data support the presence and interplay of Piezo1 and BKCa in human atrial fibroblasts in the absence of physical links between the two channel proteins.


Assuntos
Arritmia Sinusal/metabolismo , Fibrilação Atrial/metabolismo , Remodelamento Atrial/genética , Átrios do Coração/metabolismo , Canais Iônicos/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Arritmia Sinusal/patologia , Arritmia Sinusal/cirurgia , Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Remodelamento Atrial/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Átrios do Coração/patologia , Humanos , Indóis/farmacologia , Canais Iônicos/genética , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/agonistas , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tetrazóis/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Transfecção
6.
Front Pharmacol ; 11: 525020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117152

RESUMO

Increasing evidence point out the important roles of ion channels in the physiopathology of cancers, so that these proteins are now considered as potential new therapeutic targets and biomarkers in this disease. Indeed, ion channels have been largely described to participate in many hallmarks of cancers such as migration, invasion, proliferation, angiogenesis, and resistance to apoptosis. At the molecular level, the development of cancers is characterised by alterations in transduction pathways that control cell behaviors. However, the interactions between ion channels and cancer-related signaling pathways are poorly understood so far. Nevertheless, a limited number of reports have recently addressed this important issue, especially regarding the interaction between ion channels and one of the main driving forces for cancer development: the Wnt/ß-catenin signaling pathway. In this review, we propose to explore and discuss the current knowledge regarding the interplay between ion channels and the Wnt/ß-catenin signaling pathway in cancers.

7.
Pflugers Arch ; 472(9): 1371-1383, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32474749

RESUMO

Glucose transport is intimately linked to red blood cell physiology. Glucose is the unique energy source for these cells, and defects in glucose metabolism or transport activity are associated with impaired red blood cell morphology and deformability leading to reduced lifespan. In vertebrate erythrocytes, glucose transport is mediated by GLUT1 (in humans) or GLUT4 transporters. These proteins also account for dehydroascorbic acid (DHA) transport through erythrocyte membrane. The peculiarities of glucose transporters and the red blood cell pathologies involving GLUT1 are summarized in the present review.


Assuntos
Anemia Hemolítica/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Eritrócitos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Transporte de Monossacarídeos/deficiência , Anemia Hemolítica/genética , Animais , Erros Inatos do Metabolismo dos Carboidratos/genética , Transportador de Glucose Tipo 1/genética , Humanos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...