Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1405842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993498

RESUMO

Sunflower (Helianthus annuus L.), a vital crop for global vegetable oil production, encounters sustainability challenges in its cultivation. This study assesses the effects of incorporating a winter cover crop (CC), Avena sativa (L.), on the subsequent growth of sunflower crops and the vitality of their rhizosphere microbial communities over a two-year period. It examines the impact of two methods for suppressing winter CC-chemical suppression using glyphosate and mechanical suppression via rolling-both with and without the addition of phosphorus (P) starter fertilizer. These approaches are evaluated in comparison to the regional best management practices for sunflower cultivation, which involve a preparatory chemical fallow period and the subsequent application of starter P fertilizer. The methodology utilized Illumina sequencing for the analysis of rhizosphere bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) amplicons. Findings indicate a significant improvement (9-37%) in sunflower growth parameters (plant height, stem diameter, head diameter, and head dry weight) when cultivated after glyphosate-suppressed winter CC compared to the chemical fallows. Conversely, rolling of winter CC generally negatively affected sunflower growth. Rhizosphere bacterial communities following chemical suppression of winter CC showed greater Pielou's evenness, indicating a uniform distribution of species. In general, this treatment had more detrimental effects on beneficial sunflower rhizosphere bacteria such as Hymenobacter and Pseudarthrobacter than rolling of the winter CC, suggesting that the overall effect on sunflower growth may be mitigated by the redundancy within the bacterial community. As for fungal diversity, measured by the Chao-1 index, it increased in sunflowers planted after winter CC and receiving P fertilization, underscoring nutrient management's role in microbial community structure. Significant positive correlations between fungal diversity and sunflower growth parameters at the reproductive stage were observed (r = 0.41-0.72; p < 0.05), highlighting the role of fungal communities in plant fitness. The study underscores the positive effects of winter CC inclusion and management for enhancing sunflower cultivation while promoting beneficial microbes in the crop's rhizosphere. We advocate for strategic winter CC species selection, optimization of mechanical suppression techniques, and tailored phosphorus fertilization of sunflower to foster sustainable agriculture.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38985425

RESUMO

Antimicrobial resistance (AMR) is one of the main global health challenges. Anaerobic digestion (AD) can significantly reduce the burden of antibiotic resistance genes (ARGs) in animal manures. However, the reduction is often incomplete. The agronomic use of digestates requires assessments of their effects on soil ARGs. The objective of this study was to assess the effect of digestate on the abundance of ARGs and mobile genetic elements (MGEs) in the rhizosphere of ryegrass (Lolium perenne L.) and to determine whether half-dose replacement of digestate with urea (combined fertilizer) can be implemented as a safer approach while maintaining a similar biomass production. A greenhouse assay was conducted during 190 days under a completely randomized design with two experimental factors: fertilizer type (unfertilized control and fertilized treatments with equal N dose: digestate, urea and combined fertilizer) and sampling date (16 and 148 days after the last application). The results indicated that the digestate significantly increased the abundance of clinical class 1 integrons (intI1 gene) relative to the unfertilized control at both sampling dates (P < 0.05), while the combined fertilizer only increased them at the first sampling. Sixteen days after completing the fertilization scheme only the combined fertilizer and urea significantly increased the biomass production relative to the control (P < 0.05). Additionally, by the end of the assay, the combined fertilizer showed significantly lower levels of the macrolide-resistance gene ermB than digestate and a cumulative biomass similar to urea or digestate. Overall, the combined fertilizer can alleviate the burden of integrons and ermB while simultaneously improving biomass production.

3.
Trends Microbiol ; 32(5): 415-418, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519354

RESUMO

Approaches to rapidly collecting global biodiversity data are increasingly important, but biodiversity blind spots persist. We organized a three-day Datathon event to improve the openness of local biodiversity data and facilitate data reuse by local researchers. The first Datathon, organized among microbial ecologists in Uruguay and Argentina assembled the largest microbiome dataset in the region to date and formed collaborative consortia for microbiome data synthesis.


Assuntos
Biodiversidade , Ecologia , Microbiota , Argentina , Uruguai
4.
World J Microbiol Biotechnol ; 38(6): 98, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35478266

RESUMO

Glyphosate (N-(phosphonomethyl)glycine) has emerged as the top-selling herbicide worldwide because of its versatility in controlling annual and perennial weeds and the extensive use of glyphosate-resistant crops. Concerns related to the widespread use of glyphosate and its ubiquitous presence in the environment has led to a large number of studies and reviews, which examined the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA) in the environment. Because the biological breakdown of glyphosate is most likely the main elimination process, the biodegradation of glyphosate has also been the object of abundant experimental work. Importantly, glyphosate biodegradation in aquatic and soil ecosystems is affected not only by the composition and the activity of microbial communities, but also by the physical environment. However, the interplay between microbiomes and glyphosate biodegradation in edaphic and aquatic environments has rarely been considered before. The proposed minireview aims at filling this gap. We summarize the most recent work exploring glyphosate biodegradation in natural aquatic biofilms, the biological, chemical and physical factors and processes playing on the adsorption, transport and biodegradation of glyphosate at different levels of soil organization and under different agricultural managements, and its impact on soil microbial communities.


Assuntos
Herbicidas , Microbiota , Glicina/análogos & derivados , Solo/química , Glifosato
5.
Front Microbiol ; 12: 746524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690996

RESUMO

Cover crops (CC) have demonstrated beneficial effects on several soil properties yet questions remain regarding their effects on soil microbial communities. Among them, ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) have a key role for N cycling in soil and their responses in the rhizosphere of terminated CC deserve further investigation. A greenhouse experiment was established to assess N fertilization (with or without N) and termination methods (glyphosate, mowing, and untreated control) of common oat (Avena sativa L.) as potential drivers of AOA and AOB responses in the rhizosphere. The abundance of amoA genes was determined by quantitative real-time PCR (qPCR), the community structure was assessed with Illumina amplicon sequencing of these genes, while the function was assessed from potential nitrification activity (PNA). While N fertilization had no influence on AOA, the termination method significantly increased amoA gene copies of AOA in mowed plants relative to glyphosate termination or the untreated control (1.76 and 1.49-fold change, respectively), and shifted AOA community structure (PERMANOVA, p<0.05). Ordination methods indicated a separation between AOA communities from control and glyphosate-terminated plants relative to mowed plants for both UniFrac and Aitchison distance. Converserly, N fertilization significantly increased AOB abundance in the rhizosphere of mowed and control plants, yet not in glyphosate-treated plants. Analyses of community structure showed that AOB changed only in response to N fertilization and not to the termination method. In line with these results, significantly higher PNA values were measured in all fertilized samples, regardless of the termination methods. Overall, the results of this study indicated that bacterial and archaeal nitrifiers have contrasting responses to fertlization and plant termination methods. While AOA were responsive to the termination method, AOB were more sensitive to N additions, although, the stimulative effect of N fertilization on amoA AOB abundance was dependent on the termination method.

6.
PLoS One ; 14(10): e0223600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596877

RESUMO

Cover crop suppression with glyphosate-based herbicides (GBHs) represents a common agricultural practice. The objective of this study was to compare rhizospheric microbial communities of A. sativa plants treated with a GBH relative to the mechanical suppression (mowing) in order to assess their differences and the potential implications for soil processes. Samples were obtained at 4, 10, 17 and 26 days post-suppression. Soil catabolic profiling and DNA-based methods were applied. At 26 days, higher respiration responses and functional diversity indices (Shannon index and catabolic evenness) were observed under glyphosate suppression and a neat separation of catabolic profiles was detected in multivariate analysis. Sarcosine and Tween 20 showed the highest contribution to this separation. Metabarcoding revealed a non-significant effect of suppression method on either alpha-diversity metrics or beta-diversity. Conversely, differences were detected in the relative abundance of specific bacterial taxa. Mesorhizobium sequences were detected in higher relative abundance in glyphosate-treated plants at the end of the experiment while the opposite trend was observed for Gaiella. Quantitative PCR of amoA gene from ammonia-oxidizing archaea showed a lower abundance under GBH suppression again at 26 days, while ammonia-oxidizing bacteria remained lower at all sampling times. Broad host range plasmids IncP-1ß and IncP-1ε were exclusively detected in the rhizosphere of glyphosate-treated plants at 10 days and at 26 days, respectively. Overall, our study demonstrates differential effects of suppression methods on the abundance of specific bacterial taxa, on the physiology and mobile genetic elements of microbial communities while no differences were detected in taxonomic diversity.


Assuntos
Avena/microbiologia , Glicerol/análogos & derivados , Glicina/análogos & derivados , Herbicidas/farmacologia , Metagenoma , Microbiota/efeitos dos fármacos , Rizosfera , Archaea/genética , Avena/efeitos dos fármacos , Código de Barras de DNA Taxonômico , Glicerol/farmacologia , Glicina/farmacologia , Mesorhizobium/genética , Metagenômica , Microbiota/genética
7.
Plant Physiol Biochem ; 118: 245-255, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28651230

RESUMO

The worldwide-distributed leaf peach curl disease is caused by the biotroph Taphrina deformans. To characterize the plant-fungus interaction, resistant and susceptible Prunus persica genotypes grown in the orchard were studied. Asymptomatic leaves were tested for fungal presence. In all resistant leaves analyzed the fungus was not detected. Conversely, leaves from the susceptible genotype were categorized according to the presence or absence of the pathogen. Comparative metabolomic analysis disclosed the metabolite composition associated with resistant and susceptible interactions, and of compounds involved in fungal growth inhibition such as chlorogenic acid, whose in vitro antifungal activity was verified in this work. Differential proteome studies revealed that chloroplasts are important site of plant defense responses against T. deformans. Members of the Bet-v1-like family protein differentially responded to the pathogen. Extracellular pathogenesis-related proteins, evaluated by qRT-PCR, and an enone oxidoreductase are constitutively present in leaves of resistant trees and could be related to fungal resistance. This study is a global view of the changes in the metabolome, proteome and transcripts related to plant defense in naturally infected leaves of susceptible plants during the asymptomatic stage. Additionally, it provides clues to the successful molecular mechanisms operating in resistant plants, which neither develop the disease nor harbor the pathogen.


Assuntos
Ascomicetos , Resistência à Doença/genética , Genótipo , Metaboloma/genética , Proteoma , Prunus persica , Proteoma/genética , Proteoma/metabolismo , Proteômica , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/microbiologia
8.
J Environ Manage ; 167: 59-65, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26613351

RESUMO

Recycling implies additional costs for separated municipal solid waste (MSW) collection. The aim of the present study is to propose and implement a management tool - the full cost accounting (FCA) method - to calculate the full collection costs of different types of waste. Our analysis aims for a better understanding of the difficulties of putting FCA into practice in the MSW sector. We propose a FCA methodology that uses standard cost and actual quantities to calculate the collection costs of separate and undifferentiated waste. Our methodology allows cost efficiency analysis and benchmarking, overcoming problems related to firm-specific accounting choices, earnings management policies and purchase policies. Our methodology allows benchmarking and variance analysis that can be used to identify the causes of off-standards performance and guide managers to deploy resources more efficiently. Our methodology can be implemented by companies lacking a sophisticated management accounting system.


Assuntos
Reciclagem/economia , Resíduos Sólidos/economia , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/métodos , Custos e Análise de Custo , Resíduos Sólidos/análise
9.
Sci Total Environ ; 533: 60-8, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26150308

RESUMO

Glyphosate is the most used herbicide worldwide. While contrasting results have been observed related with its impact on soil microbial communities, more studies are necessary to elucidate the potential effects of the herbicide. Differences in tolerance detected by Pollution Induced Community Tolerance (PICT) approach could reflect these effects. The objective of the present study was to assess the tolerance to glyphosate (the active ingredient and a commercial formulation) of contrasting soils with (H) and without (NH) history of exposure. The hypothesis of a higher tolerance in H soils due to a sustained selection pressure on community structure was tested through the PICT approach. Results indicated that tolerance to glyphosate is not consistent with previous history of exposure to the herbicide either for the active ingredient or for a commercial formulation. Soils of H and NH sites were also characterized in order to determine to what extent they differ in their functional diversity and structure of microbial communities. Denaturant Gradient Gel Electrophoresis (DGGE) and Quantitative Real Time PCR (Q-PCR) indicated high similarity of Eubacteria profiles as well as no significant differences in abundance, respectively, between H and NH sites. Community level physiological profiling (CLPP) indicated some differences in respiration of specific sources but functional diversity was very similar as reflected by catabolic evenness (E). These results support PICT assay, which ideally requires soils with differences in their exposure to the contaminant but minor differences in other characteristics. This is, to our knowledge, the first report of PICT approach with glyphosate examining tolerance at soil microbial community level.


Assuntos
Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Adaptação Fisiológica , Ecotoxicologia , Glicina/toxicidade , Medição de Risco , Solo , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...