Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sleep ; 38(6): 979-88, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25409107

RESUMO

STUDY OBJECTIVES: Sleep neurobiology studies use nocturnal species, mainly rats and mice. However, because their daily sleep/wake organization is inverted as compared to humans, a diurnal model for sleep studies is needed. To fill this gap, we phenotyped sleep and waking in Arvicanthis ansorgei, a diurnal rodent widely used for the study of circadian rhythms. DESIGN: Video-electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) recordings. SETTING: Rodent sleep laboratory. PARTICIPANTS: Fourteen male Arvicanthis ansorgei, aged 3 mo. INTERVENTIONS: 12 h light (L):12 h dark (D) baseline condition, 24-h constant darkness, 6-h sleep deprivation. MEASUREMENTS AND RESULTS: Wake and rapid eye movement (REM) sleep showed similar electrophysiological characteristics as nocturnal rodents. On average, animals spent 12.9 h ± 0.4 awake per 24-h cycle, of which 6.88 h ± 0.3 was during the light period. NREM sleep accounted for 9.63 h ± 0.4, which of 5.13 h ± 0.2 during dark period, and REM sleep for 89.9 min ± 6.7, which of 52.8 min ± 4.4 during dark period. The time-course of sleep and waking across the 12 h light:12 h dark was overall inverted to that observed in rats or mice, though with larger amounts of crepuscular activity at light and dark transitions. A dominant crepuscular regulation of sleep and waking persisted under constant darkness, showing the lack of a strong circadian drive in the absence of clock reinforcement by external cues, such as a running wheel. Conservation of the homeostatic regulation was confirmed with the observation of higher delta power following sustained waking periods and a 6-h sleep deprivation, with subsequent decrease during recovery sleep. CONCLUSIONS: Arvicanthis ansorgei is a valid diurnal rodent model for studying the regulatory mechanisms of sleep and so represents a valuable tool for further understanding the nocturnality/diurnality switch.


Assuntos
Ritmo Circadiano/fisiologia , Modelos Animais , Muridae/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Ritmo Circadiano/efeitos da radiação , Sinais (Psicologia) , Escuridão , Eletroencefalografia , Eletromiografia , Eletroculografia , Homeostase/efeitos da radiação , Luz , Masculino , Reprodutibilidade dos Testes , Sono/efeitos da radiação , Privação do Sono/fisiopatologia , Sono REM/fisiologia , Sono REM/efeitos da radiação , Fatores de Tempo , Vigília/efeitos da radiação
2.
Neurobiol Aging ; 34(6): 1589-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23273571

RESUMO

The elderly population shows various circadian disturbances, including dampened amplitude of rhythmicity and decreased responsiveness to light. The common poor folate status in the elderly might account for these aging-related circadian disturbances. To test this hypothesis, we investigated whether folate deficiency in mice affects circadian oscillations of the master clock in the suprachiasmatic nuclei, and the shifting responses to light. Mice fed a diet without folate for 6 weeks displayed markedly reduced (4.5-fold) erythrocyte folate concentration and increased (2.3-fold) homocysteinemia compared with control mice. Folate deficiency decreased the circadian amplitude of vasopressin and the clock protein PERIOD 2 (PER2) in the master clock, slowed the rate of re-entrainment of behavioral rhythms after delayed light-dark cycle and reduced light-induced phase-delays, without detectable morphologic changes in the retina, such as the number of melanopsinergic ganglion cells, that might have impaired photodetection. In conclusion, folate deficiency and consecutive hyperhomocysteinemia led to dampened PER2 and vasopressin oscillations in the master clock and reduced responsiveness to photic resetting, which constitute hallmarks of aging effects on circadian rhythmicity.


Assuntos
Envelhecimento/fisiologia , Ritmo Circadiano/fisiologia , Deficiência de Ácido Fólico/metabolismo , Proteínas Circadianas Period/metabolismo , Animais , Encéfalo/metabolismo , Deficiência de Ácido Fólico/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/antagonistas & inibidores , Retina/metabolismo , Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...