Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(10): 103184, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667946

RESUMO

The Ca2+/Calmodulin-dependent protein kinase II (CaMKII) is a central regulator of synaptic plasticity and has been implicated in various neurological conditions, including schizophrenia. Here, we characterize six different CaMKIIα variants found in patients with schizophrenia. Only R396stop disrupted the 12-meric holoenzyme structure, GluN2B binding, and synaptic localization. Additionally, R396stop impaired T286 autophosphorylation that generates Ca2+-independent "autonomous" kinase activity. This impairment in T286 autophosphorylation was shared by the R8H mutation, the only mutation that additionally reduced stimulated kinase activity. None of the mutations affected the levels of CaMKII expression in HEK293 cells. Thus, impaired CaMKII function was detected only for R396stop and R8H. However, two of the other mutations have been later identified also in the general population, and not all mutations found in patients with schizophrenia would be expected to cause disease. Nonetheless, for the R396stop mutation, the severity of the biochemical effects found here would predict a neurological phenotype.

2.
Cell Rep ; 21(2): 455-466, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020631

RESUMO

Chromatin remodeling is required for genome function and is facilitated by ATP-dependent complexes, such as nucleosome remodeling and deacetylase (NuRD). Among its core components is the chromodomain helicase DNA binding protein 3 (CHD3) whose functional significance is not well established. Here, we show that CHD3 co-localizes with the other NuRD subunits, including HDAC1, near the H3K9ac-enriched promoters of the NuRD target genes. The tandem PHD fingers of CHD3 bind histone H3 tails and posttranslational modifications that increase hydrophobicity of H3K9-methylation or acetylation (H3K9me3 or H3K9ac)-enhance this interaction. Binding of CHD3 PHDs promotes H3K9Cme3-nucleosome unwrapping in vitro and perturbs the pericentric heterochromatin structure in vivo. Methylation or acetylation of H3K9 uniquely alleviates the intra-nucleosomal interaction of histone H3 tails, increasing H3K9 accessibility. Collectively, our data suggest that the targeting of covalently modified H3K9 by CHD3 might be essential in diverse functions of NuRD.


Assuntos
DNA Helicases/metabolismo , Código das Histonas , Histonas/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Acetilação , Animais , Sítios de Ligação , DNA Helicases/química , Células HEK293 , Histona Desacetilase 1/metabolismo , Histonas/química , Humanos , Metilação , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Simulação de Acoplamento Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Xenopus
3.
J Biol Chem ; 290(38): 22919-30, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26229108

RESUMO

Plant homeodomain (PHD) finger-containing proteins are implicated in fundamental biological processes, including transcriptional activation and repression, DNA damage repair, cell differentiation, and survival. The PHD finger functions as an epigenetic reader that binds to posttranslationally modified or unmodified histone H3 tails, recruiting catalytic writers and erasers and other components of the epigenetic machinery to chromatin. Despite the critical role of the histone-PHD interaction in normal and pathological processes, selective inhibitors of this association have not been well developed. Here we demonstrate that macrocyclic calixarenes can disrupt binding of PHD fingers to methylated lysine 4 of histone H3 in vitro and in vivo. The inhibitory activity relies on differences in binding affinities of the PHD fingers for H3K4me and the methylation state of the histone ligand, whereas the composition of the aromatic H3K4me-binding site of the PHD fingers appears to have no effect. Our approach provides a novel tool for studying the biological roles of methyllysine readers in epigenetic signaling.


Assuntos
Calixarenos/química , Calixarenos/síntese química , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/química , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética
4.
Biochem J ; 459(3): 505-12, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24576085

RESUMO

The tandem PHD (plant homeodomain) fingers of the CHD4 (chromodomain helicase DNA-binding protein 4) ATPase are epigenetic readers that bind either unmodified histone H3 tails or H3K9me3 (histone H3 trimethylated at Lys9). This dual function is necessary for the transcriptional and chromatin remodelling activities of the NuRD (nucleosome remodelling and deacetylase) complex. In the present paper, we show that calixarene-based supramolecular hosts disrupt binding of the CHD4 PHD2 finger to H3K9me3, but do not affect the interaction of this protein with the H3K9me0 (unmodified histone H3) tail. A similar inhibitory effect, observed for the association of chromodomain of HP1γ (heterochromatin protein 1γ) with H3K9me3, points to a general mechanism of methyl-lysine caging by calixarenes and suggests a high potential for these compounds in biochemical applications. Immunofluorescence analysis reveals that the supramolecular agents induce changes in chromatin organization that are consistent with their binding to and disruption of H3K9me3 sites in living cells. The results of the present study suggest that the aromatic macrocyclic hosts can be used as a powerful new tool for characterizing methylation-driven epigenetic mechanisms.


Assuntos
Calixarenos/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Desenho de Fármacos , Histonas/antagonistas & inibidores , Indicadores e Reagentes/farmacologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/antagonistas & inibidores , Modelos Moleculares , Autoantígenos/química , Autoantígenos/genética , Autoantígenos/metabolismo , Calixarenos/síntese química , Calixarenos/química , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética/efeitos dos fármacos , Células HEK293 , Histonas/metabolismo , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Indicadores e Reagentes/síntese química , Indicadores e Reagentes/química , Lisina/análogos & derivados , Lisina/metabolismo , Metilação , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Cell Mol Life Sci ; 70(19): 3513-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23340908

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex regulates chromatin organization, gene transcription, genomic stability and developmental signaling. NuRD has a unique dual enzymatic activity, containing an ATPase and a histone deacetylase among its six core subunits. Recent studies indicate that NuRD composition and the interplay between subunits may dictate the diverse functions of the complex. In this review, we examine the structures and biological roles of the NuRD subunits and discuss new avenues of research to advance our understanding of the NuRD-mediated signaling network.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Animais , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...