Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 282(19): 3808-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26198663

RESUMO

The malarial parasite Plasmodium falciparum is exposed to substantial redox challenges during its complex life cycle. In intraerythrocytic parasites, haemoglobin breakdown is a major source of reactive oxygen species. Deficiencies in human glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate pathway (PPP), lead to a disturbed redox equilibrium in infected erythrocytes and partial protection against severe malaria. In P. falciparum, the first two reactions of the PPP are catalysed by the bifunctional enzyme glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase (PfGluPho). This enzyme differs structurally from its human counterparts and represents a potential target for drugs. In the present study we used epitope tagging of endogenous PfGluPho to verify that the enzyme localises to the parasite cytosol. Furthermore, attempted double crossover disruption of the PfGluPho gene indicates that the enzyme is essential for the growth of blood stage parasites. As a further step towards targeting PfGluPho pharmacologically, ellagic acid was characterised as a potent PfGluPho inhibitor with an IC50 of 76 nM. Interestingly, pro-oxidative drugs or treatment of the parasites with H2O2 only slightly altered PfGluPho expression or activity under the conditions tested. Furthermore, metabolic profiling suggested that pro-oxidative drugs do not significantly perturb the abundance of PPP intermediates. These data indicate that PfGluPho is essential in asexual parasites, but that the oxidative arm of the PPP is not strongly regulated in response to oxidative challenge.


Assuntos
Antimaláricos/farmacologia , Hidrolases de Éster Carboxílico/metabolismo , Ácido Elágico/farmacologia , Glucosefosfato Desidrogenase/metabolismo , Complexos Multienzimáticos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Sangue/parasitologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Citosol/enzimologia , Ácido Elágico/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Glucose/metabolismo , Glucosefosfato Desidrogenase/antagonistas & inibidores , Humanos , Peróxido de Hidrogênio/farmacologia , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Estresse Oxidativo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética
2.
Mol Microbiol ; 96(4): 796-814, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25689481

RESUMO

The malaria parasite Plasmodium falciparum has two translationally active organelles - the apicoplast and mitochondrion, which import nuclear-encoded translation factors to mediate protein synthesis. Initiation of translation is a complex step wherein initiation factors (IFs) act in a regulated manner to form an initiation complex. We identified putative organellar IFs and investigated the targeting, structure and function of IF1, IF2 and IF3 homologues encoded by the parasite nuclear genome. A single PfIF1 is targeted to the apicoplast. Apart from its critical ribosomal interactions, PfIF1 also exhibited nucleic-acid binding and melting activities and mediated transcription anti-termination. This suggests a prominent ancillary function for PfIF1 in destabilisation of DNA and RNA hairpin loops encountered during transcription and translation of the A+T rich apicoplast genome. Of the three putative IF2 homologues, only one (PfIF2a) was an organellar protein with mitochondrial localisation. We additionally identified an IF3 (PfIF3a) that localised exclusively to the mitochondrion and another protein, PfIF3b, that was apicoplast targeted. PfIF3a exhibited ribosome anti-association activity, and monosome splitting by PfIF3a was enhanced by ribosome recycling factor (PfRRF2) and PfEF-G(Mit). These results fill a gap in our understanding of organellar translation in Plasmodium, which is the site of action of several anti-malarial compounds.


Assuntos
Apicoplastos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Mitocôndrias/genética , Iniciação Traducional da Cadeia Peptídica , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Apicoplastos/metabolismo , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/genética , Mitocôndrias/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Alinhamento de Sequência
3.
PLoS One ; 8(9): e74408, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058559

RESUMO

The two organelles, apicoplast and mitochondrion, of the malaria parasite Plasmodium falciparum have unique morphology in liver and blood stages; they undergo complex branching and looping prior to division and segregation into daughter merozoites. Little is known about the molecular processes and proteins involved in organelle biogenesis in the parasite. We report the identification of an AAA+/FtsH protease homolog (PfFtsH1) that exhibits ATP- and Zn(2+)-dependent protease activity. PfFtsH1 undergoes processing, forms oligomeric assemblies, and is associated with the membrane fraction of the parasite cell. Generation of a transfectant parasite line with hemagglutinin-tagged PfFtsH1, and immunofluorescence assay with anti-PfFtsH1 Ab demonstrated that the protein localises to P. falciparum mitochondria. Phylogenetic analysis and the single transmembrane region identifiable in PfFtsH1 suggest that it is an i-AAA like inner mitochondrial membrane protein. Expression of PfFtsH1 in Escherichia coli converted a fraction of bacterial cells into division-defective filamentous forms implying a sequestering effect of the Plasmodium factor on the bacterial homolog, indicative of functional conservation with EcFtsH. These results identify a membrane-associated mitochondrial AAA+/FtsH protease as a candidate regulatory protein for organelle biogenesis in P. falciparum.


Assuntos
Mitocôndrias/enzimologia , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Citocinese/efeitos dos fármacos , Escherichia coli/metabolismo , Imunofluorescência , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Parasitos/citologia , Parasitos/efeitos dos fármacos , Parasitos/enzimologia , Peptídeo Hidrolases/química , Filogenia , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Quaternária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas de Protozoários/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Zinco/farmacologia
4.
Int J Parasitol ; 42(2): 177-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22222968

RESUMO

The causative agent of malaria, Plasmodium, possesses three translationally active compartments: the cytosol, the mitochondrion and a relic plastid called the apicoplast. Aminoacyl-tRNA synthetases to charge tRNA are thus required for all three compartments. However, the Plasmodiumfalciparum genome encodes too few tRNA synthetases to supply a unique enzyme for each amino acid in all three compartments. We have investigated the subcellular localisation of three tRNA synthetases (AlaRS, GlyRS and ThrRS), which occur only once in the nuclear genome, and we show that each of these enzymes is dually localised to the P. falciparum cytosol and the apicoplast. No mitochondrial fraction is apparent for these three enzymes, which suggests that the Plasmodium mitochondrion lacks at least these three tRNA synthetases. The unique Plasmodium ThrRS is the presumed target of the antimalarial compound borrelidin. Borrelidin kills P. falciparum parasites quickly without the delayed death effect typical of apicoplast translation inhibitors and without an observable effect on apicoplast morphology. By contrast, mupirocin, an inhibitor of the apicoplast IleRS, kills with a delayed death effect that inhibits apicoplast growth and division. Because inhibition of dual targeted tRNA synthetases should arrest translation in all compartments of the parasite, these enzymes deserve further investigation as potential targets for antimalarial drug development.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Citosol/enzimologia , Plasmodium falciparum/fisiologia , Plastídeos/enzimologia , Antimaláricos/farmacologia , Álcoois Graxos/farmacologia , Mupirocina/farmacologia , Plasmodium falciparum/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...