Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Anim (NY) ; 53(7): 181-185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886565

RESUMO

For the preparation of embryo transfer recipients, surgically vasectomized mice are commonly used, generated by procedures associated with pain and discomfort. Sterile transgenic strains provide a nonsurgical replacement, but their maintenance requires breeding and genotyping procedures. We have previously reported the use of naturally sterile STUSB6F1 hybrids for the production of embryo transfer recipients and found the behavior of these recipients to be indistinguishable from those generated by vasectomized males. The method provides two substantial 3R impacts: refinement (when compared with surgical vasectomy) and reduction in breeding procedures (compared with sterile transgenic lines). Despite initial promise, the 3Rs impact of this innovation was limited by difficulties in breeding the parental STUS/Fore strain, which precluded the wider distribution of the sterile hybrid. The value of a 3R initiative is only as good as the uptake in the community. Here we, thus, select a different naturally sterile hybrid, generated from strains that are widely available: the B6SPRTF1 hybrid between C57BL/6J and Mus spretus. We first confirmed its sterility by sperm counting and testes weight and then trialed the recovery of cryopreserved embryos and germplasm within three UK facilities. Distribution of sperm for the generation of these hybrids by in vitro fertilization was found to be the most robust distribution method and avoided the need to maintain a live M. spretus colony. We then tested the suitability of B6SPRTF1 sterile hybrids for the generation of embryo transfer recipients at these same three UK facilities and found the hybrids to be suitable when compared with surgical vasectomized mice and a sterile transgenic strain. In conclusion, the potential 3Rs impact of this method was confirmed by the ease of distribution and the utility of sterile B6SPRTF1 hybrids at independent production facilities.


Assuntos
Transferência Embrionária , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Transferência Embrionária/veterinária , Transferência Embrionária/métodos , Feminino , Hibridização Genética , Pseudogravidez/genética , Pseudogravidez/veterinária , Criopreservação/veterinária , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Vasectomia/veterinária , Vasectomia/métodos
2.
ACS Appl Mater Interfaces ; 15(5): 6807-6816, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700920

RESUMO

Small-scale, primary electrochemical energy storage devices ("microbatteries") are critical power sources for microelectromechanical system (MEMS)-based sensors and actuators. However, the achievable volumetric and gravimetric energy densities of microbatteries are typically insufficient for intermediate-term applications of MEMS-enabled distributed internet-connected devices. Further, in the increasing subset of Internet of Things (IoT) nodes, where actuation is desired, the peak power density of the microbattery must be simultaneously considered. Metal-air approaches to achieving microbatteries are attractive, as the anode and cathode are amenable to miniaturization; however, further improvements in energy density can be obtained by minimizing the electrolyte volume. To investigate these potential improvements, this work studied very lean hydrogel electrolytes based on poly(vinyl alcohol) (PVA). Integration of high potassium hydroxide (KOH) loading into the PVA hydrogel improved electrolyte performance. The addition of potassium carbonate (K2CO3) to the KOH-PVA gel decreased the carbonation consumption rate of KOH in the gel electrolyte by 23.8% compared to PVA-KOH gel alone. To assess gel performance, a microbattery was formed from a zinc (Zn) anode layer, a gel electrolyte layer, and a carbon-platinum (C-Pt) air cathode layer. Volumetric energy densities of approximately 1400 Wh L-1 and areal peak power densities of 139 mW cm-2 were achieved with a PVA-KOH-K2CO3 electrolyte. Further structural optimization, including using multilayer gel electrolytes and thinning the air cathode, resulted in volumetric and gravimetric energy densities of 1576 Wh L-1 and 420 Wh kg-1, respectively. The batteries described in this work are manufactured in an open environment and fabricated using a straightforward layer-by-layer method, enabling the potential for high fabrication throughput in a MEMS-compatible fashion.

4.
Science ; 340(6130): 314-7, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23599483

RESUMO

Educational policy increasingly emphasizes knowledge and skills for the preprofessional "science pipeline" rather than helping students use science in daily life. We synthesize research on public engagement with science to develop a research-based plan for cultivating competent outsiders: nonscientists who can access and make sense of science relevant to their lives. Schools should help students access and interpret the science they need in response to specific practical problems, judge the credibility of scientific claims based on both evidence and institutional cues, and cultivate deep amateur involvement in science.


Assuntos
Educação Profissionalizante/métodos , Instituições Acadêmicas , Ciência/educação , Humanos , Prática Psicológica , Instituições Acadêmicas/organização & administração , Instituições Acadêmicas/normas , Pensamento , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...