Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 8(11): 2253-2258, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36268971

RESUMO

Metabolic profiling of the extracts from a library of actinobacteria led to the identification of a novel polyketide, demurilactone A, produced by Streptomyces strain DEM21308. The structure of the compound was assigned based on a detailed investigation of 1D/2D NMR spectra and HR-MS. Whole genome DNA sequencing, followed by bioinformatics analysis and insertional mutagenesis, identified type I polyketide synthases encoded by the dml gene cluster to direct the biosynthesis of this polyene macrolide. While the number of modules is consistent with the carbon backbone of the assigned structure, some discrepancies were identified in the domain organization of five modules. Close investigation of the amino acid sequences identified several mutations in the conserved motifs of nonfunctional domains. Furthermore, the absolute configuration of hydroxy-bearing stereocenters was proposed based on analyses of the ketoreductase domains. Remarkably, although demurilactone A has little detectable activity against normal-walled bacteria, it specifically inhibits the growth of cell wall-deficient "L-form" Bacillus subtilis at a minimum inhibitory concentration value of 16 µg/mL. Time-lapse microscopy analyses revealed that demurilactone affects membrane dynamics, probably by reducing membrane fluidity. This compound could be a powerful reagent for studying long-standing questions about the involvement of L-forms in recurrent infection.


Assuntos
Bacillus subtilis , Streptomyces , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Inibidores do Crescimento/metabolismo , Policetídeo Sintases/genética , Streptomyces/genética , Streptomyces/química , Macrolídeos
2.
Front Microbiol ; 13: 1004737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312962

RESUMO

Growth of most rod-shaped bacteria is accompanied by the insertion of new peptidoglycan into the cylindrical cell wall. This insertion, which helps maintain and determine the shape of the cell, is guided by a protein machine called the rod complex or elongasome. Although most of the proteins in this complex are essential under normal growth conditions, cell viability can be rescued, for reasons that are not understood, by the presence of a high (mM) Mg2+ concentration. We screened for natural product compounds that could rescue the growth of mutants affected in rod-complex function. By screening > 2,000 extracts from a diverse collection of actinobacteria, we identified a compound, mirubactin C, related to the known iron siderophore mirubactin A, which rescued growth in the low micromolar range, and this activity was confirmed using synthetic mirubactin C. The compound also displayed toxicity at higher concentrations, and this effect appears related to iron homeostasis. However, several lines of evidence suggest that the mirubactin C rescuing activity is not due simply to iron sequestration. The results support an emerging view that the functions of bacterial siderophores extend well beyond simply iron binding and uptake.

3.
Antimicrob Agents Chemother ; 65(12): e0086421, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34606341

RESUMO

Rifamycins, such as rifampicin (Rif), are potent inhibitors of bacterial RNA polymerase (RNAP) and are widely used antibiotics. Rifamycin resistance is usually associated with mutations in RNAP that preclude rifamycin binding. However, some bacteria have a type of ADP-ribosyl transferases, Arr, which ADP-ribosylate rifamycin molecules, thus inactivating their antimicrobial activity. Here, we directly show that ADP-ribosylation abolishes inhibition of transcription by rifampicin, the most widely used rifamycin antibiotic. We also show that a natural rifamycin, kanglemycin A (KglA), which has a unique sugar moiety at the ansa chain close to the Arr modification site, does not bind to Arr from Mycobacterium smegmatis and thus is not susceptible to inactivation. We, found, however, that kanglemycin A can still be ADP-ribosylated by the Arr of an emerging pathogen, Mycobacterium abscessus. Interestingly, the only part of Arr that exhibits no homology between the species is the part that sterically clashes with the sugar moiety of kanglemycin A in M. smegmatis Arr. This suggests that M. abscessus has encountered KglA or rifamycin with a similar sugar modification in the course of evolution. The results show that KglA could be an effective antimicrobial against some of the Arr-encoding bacteria.


Assuntos
Rifamicinas , ADP-Ribosilação , Testes de Sensibilidade Microbiana , Rifampina/farmacologia , Rifamicinas/farmacologia
4.
Nat Prod Bioprospect ; 11(4): 431-445, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33881756

RESUMO

This study was designed to identify and investigate bioactive natural product compounds that alter the cellular shape of the fission yeast Schizosaccharomyces pombe and induce a "rounded" or "small" cellular morphological phenotype. Bioassays using a range of antifungal agents against a multidrug-sensitive fission yeast strain, SAK950 showed that many induced a "rounded" phenotype. We then investigated whether 46 of the actinomycete strains identified in our previous study as inducing a similar phenotype produced antifungal agents of similar classes. We show that five of the strains produced streptothricin and that 26 strains produced polyenes, including fungichromin, filipin and candicidin, the last of which was produced by 24 strains. A taxonomic study of the strains indicated that the majority of the candicidin only producers were Streptomyces hydrogenans and S. albidoflavus whilst those that additionally produced streptothricin were related to S. enissocaesilis. A follow-up study to investigate the natural products made by related strains indicated that they followed a similar pattern. The identification of several compounds from the actinomycete strains similar to the antifungal agents initially tested confirm the validity of an approach using the S. pombe morphological phenotype and actinomycete taxonomy as a predictive tool for natural product identification.

5.
Molecules ; 25(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322563

RESUMO

The synthesis of a molecularly diverse library of tetrasubstituted alkenes containing a barbiturate motif is described. Base-induced condensation of N1-substituted pyrimidine-2,4,6(1H,3H,5H)-triones with 5-(bis(methylthio)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione gave 3-substituted 5-(methylthio)-2H-pyrano[2,3-d]pyrimidine-2,4,7(1H,3H)-triones ('pyranopyrimidinones'), regioselectively. A sequence of reactions involving ring-opening of the pyran moiety, displacement of the methylthio group with an amine, re-formation of the pyran ring, and after its final cleavage with an amine, gave tetrasubstituted alkenes (3-amino-3-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)propanamides) with a diversity of substituents. Cleavage of the pyranopyrimidinones with an aniline was facilitated in 2,2,2-trifluoroethanol under microwave irradiation. Compounds were tested against Escherichia coli, Staphylococcus aureus, the yeast Schizosaccharomyces pombe, and the pathogenic fungus Candida albicans. No compounds exhibited activity against E. coli, whilst one compound was weakly active against S. aureus. Three compounds were strongly active against S. pombe, but none was active against C. albicans.


Assuntos
Alcenos/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bioensaio/métodos , Testes de Sensibilidade Microbiana , Barbitúricos/síntese química , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Concentração Inibidora 50 , Conformação Molecular , Piranos , Schizosaccharomyces/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Trifluoretanol/química
6.
Mol Cell ; 72(2): 263-274.e5, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30244835

RESUMO

Antibiotic-resistant bacterial pathogens pose an urgent healthcare threat, prompting a demand for new medicines. We report the mode of action of the natural ansamycin antibiotic kanglemycin A (KglA). KglA binds bacterial RNA polymerase at the rifampicin-binding pocket but maintains potency against RNA polymerases containing rifampicin-resistant mutations. KglA has antibiotic activity against rifampicin-resistant Gram-positive bacteria and multidrug-resistant Mycobacterium tuberculosis (MDR-M. tuberculosis). The X-ray crystal structures of KglA with the Escherichia coli RNA polymerase holoenzyme and Thermus thermophilus RNA polymerase-promoter complex reveal an altered-compared with rifampicin-conformation of KglA within the rifampicin-binding pocket. Unique deoxysugar and succinate ansa bridge substituents make additional contacts with a separate, hydrophobic pocket of RNA polymerase and preclude the formation of initial dinucleotides, respectively. Previous ansa-chain modifications in the rifamycin series have proven unsuccessful. Thus, KglA represents a key starting point for the development of a new class of ansa-chain derivatized ansamycins to tackle rifampicin resistance.


Assuntos
Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Rifabutina/farmacologia , Rifampina/farmacologia , Rifamicinas/farmacologia , Antituberculosos/farmacologia , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Mutação/efeitos dos fármacos , Mutação/genética , Mycobacterium tuberculosis/genética , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/genética
8.
ACS Chem Biol ; 13(1): 207-214, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29185696

RESUMO

Antibiotics that interfere with the bacterial cytoplasmic membrane have long-term potential for the treatment of infectious diseases as this mode of action is anticipated to result in low resistance frequency. Vancoresmycin is an understudied natural product antibiotic consisting of a terminal tetramic acid moiety fused to a linear, highly oxygenated, stereochemically complex polyketide chain. Vancoresmycin shows minimum inhibitory concentrations (MICs) from 0.125 to 2 µg/mL against a range of clinically relevant, antibiotic-resistant Gram-positive bacteria. Through a comprehensive mode-of-action study, utilizing Bacillus subtilis reporter strains, DiSC3(5) depolarization assays, and fluorescence microscopy, we have shown that vancoresmycin selectively targets the cytoplasmic membrane of Gram-positive bacteria via a non-pore-forming, concentration-dependent depolarization mechanism. Whole genome sequencing of the producing strain allowed identification of the 141 kbp gene cluster encoding for vancoresmycin biosynthesis and a preliminary model for its biosynthesis. The size and complex structure of vancoresmycin could confound attempts to generate synthetic analogues. To overcome this problem and facilitate future studies, we identified, cloned, and expressed the 141 kbp biosynthetic gene cluster in Streptomyces coelicolor M1152. Elucidation of the mode-of-action of vancoresmycin, together with the heterologous expression system, will greatly facilitate further studies of this and related molecules.


Assuntos
Antibacterianos/farmacologia , Policetídeos/farmacologia , Streptomyces coelicolor/genética , Actinobacteria/química , Antibacterianos/química , Antibacterianos/metabolismo , Bacillus subtilis/genética , Parede Celular/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lipídeos de Membrana/genética , Testes de Sensibilidade Microbiana , Família Multigênica , Policetídeos/química , Policetídeos/metabolismo , Pirrolidinonas/química , Análise de Célula Única/métodos
9.
J Cell Sci ; 130(18): 3173-3185, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28775153

RESUMO

This study was designed to identify bioactive compounds that alter the cellular shape of the fission yeast Schizosaccharomyces pombe by affecting functions involved in the cell cycle or cell morphogenesis. We used a multidrug-sensitive fission yeast strain, SAK950 to screen a library of 657 actinomycete bacteria and identified 242 strains that induced eight different major shape phenotypes in S. pombe These include the typical cell cycle-related phenotype of elongated cells, and the cell morphology-related phenotype of rounded cells. As a proof of principle, we purified four of these activities, one of which is a novel compound and three that are previously known compounds, leptomycin B, streptonigrin and cycloheximide. In this study, we have also shown novel effects for two of these compounds, leptomycin B and cycloheximide. The identification of these four compounds and the explanation of the S. pombe phenotypes in terms of their known, or predicted bioactivities, confirm the effectiveness of this approach.


Assuntos
Actinomyces/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Forma Celular , Avaliação Pré-Clínica de Medicamentos , Schizosaccharomyces/citologia , Produtos Biológicos/análise , Forma Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Cicloeximida/farmacologia , Dano ao DNA , Ácidos Graxos Insaturados/farmacologia , Fenótipo , Schizosaccharomyces/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray
10.
Nucleic Acids Res ; 40(19): 9543-56, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904076

RESUMO

Streptomycetes sense and respond to the stress of phosphate starvation via the two-component PhoR-PhoP signal transduction system. To identify the in vivo targets of PhoP we have undertaken a chromatin-immunoprecipitation-on-microarray analysis of wild-type and phoP mutant cultures and, in parallel, have quantified their transcriptomes. Most (ca. 80%) of the previously in vitro characterized PhoP targets were identified in this study among several hundred other putative novel PhoP targets. In addition to activating genes for phosphate scavenging systems PhoP was shown to target two gene clusters for cell wall/extracellular polymer biosynthesis. Furthermore PhoP was found to repress an unprecedented range of pathways upon entering phosphate limitation including nitrogen assimilation, oxidative phosphorylation, nucleotide biosynthesis and glycogen catabolism. Moreover, PhoP was shown to target many key genes involved in antibiotic production and morphological differentiation, including afsS, atrA, bldA, bldC, bldD, bldK, bldM, cdaR, cdgA, cdgB and scbR-scbA. Intriguingly, in the PhoP-dependent cpk polyketide gene cluster, PhoP accumulates substantially at three specific sites within the giant polyketide synthase-encoding genes. This study suggests that, following phosphate limitation, Streptomyces coelicolor PhoP functions as a 'master' regulator, suppressing central metabolism, secondary metabolism and developmental pathways until sufficient phosphate is salvaged to support further growth and, ultimately, morphological development.


Assuntos
Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica , Streptomyces coelicolor/genética , Fatores de Transcrição/fisiologia , Parede Celular/metabolismo , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Genoma Fúngico , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa , Fosfatos/metabolismo , Matrizes de Pontuação de Posição Específica , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/metabolismo
11.
BMC Genomics ; 11: 682, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21122120

RESUMO

BACKGROUND: Whilst being closely related to the model actinomycete Streptomyces coelicolor A3(2), S. lividans 66 differs from it in several significant and phenotypically observable ways, including antibiotic production. Previous comparative gene hybridization studies investigating such differences have used low-density (one probe per gene) PCR-based spotted arrays. Here we use new experimentally optimised 104,000 × 60-mer probe arrays to characterize in detail the genomic differences between wild-type S. lividans 66, a derivative industrial strain, TK24, and S. coelicolor M145. RESULTS: The high coverage and specificity (detection of three nucleotide differences) of the new microarrays used has highlighted the macroscopic genomic differences between two S. lividans strains and S. coelicolor. In a series of case studies we have validated the microarray and have identified subtle changes in genomic structure which occur in the Asp-activating adenylation domains of CDA non-ribosomal peptide synthetase genes which provides evidence of gene shuffling between these domains. We also identify single nucleotide sequence inter-species differences which exist in the actinorhodin biosynthetic gene cluster. As the glyoxylate bypass is non-functional in both S. lividans strains due to the absence of the gene encoding isocitrate lyase it is likely that the ethylmalonyl-CoA pathway functions as the alternative mechanism for the assimilation of C2 compounds. CONCLUSIONS: This study provides evidence for widespread genetic recombination, rather than it being focussed at 'hotspots', suggesting that the previously proposed 'archipelago model' of genomic differences between S. coelicolor and S. lividans is unduly simplistic. The two S. lividans strains investigated differ considerably in genetic complement, with TK24 lacking 175 more genes than its wild-type parent when compared to S. coelicolor. Additionally, we confirm the presence of bldB in S. lividans and deduce that S. lividans 66 and TK24, both deficient in the glyoxylate bypass, possess an alternative metabolic mechanism for the assimilation of C2 compounds. Given that streptomycetes generally display high genetic instability it is envisaged that these high-density arrays will find application for rapid assessment of genome content (particularly amplifications/deletions) in mutational studies of S. coelicolor and related species.


Assuntos
Hibridização Genômica Comparativa/métodos , Evolução Molecular , Filogenia , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Antraquinonas/metabolismo , Composição de Bases/genética , Sequência de Bases , Cromossomos Bacterianos/genética , Sondas de DNA/metabolismo , DNA Intergênico/genética , Genes Bacterianos , Variação Genética , Genômica , Dados de Sequência Molecular , Família Multigênica/genética , Análise de Sequência com Séries de Oligonucleotídeos , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Especificidade da Espécie
12.
Genome Biol ; 10(1): R5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19146703

RESUMO

BACKGROUND: DNA microarrays are a key resource for global analysis of genome content, gene expression and the distribution of transcription factor binding sites. We describe the development and application of versatile high density ink-jet in situ-synthesized DNA arrays for the G+C rich bacterium Streptomyces coelicolor. High G+C content DNA probes often perform poorly on arrays, yielding either weak hybridization or non-specific signals. Thus, more than one million 60-mer oligonucleotide probes were experimentally tested for sensitivity and specificity to enable selection of optimal probe sets for the genome microarrays. The heat-shock HspR regulatory system of S. coelicolor, a well-characterized repressor with a small number of known targets, was exploited to test and validate the arrays for use in global chromatin immunoprecipitation-on-chip (ChIP-chip) and gene expression analysis. RESULTS: In addition to confirming dnaK, clpB and lon as in vivo targets of HspR, it was revealed, using a novel ChIP-chip data clustering method, that HspR also apparently interacts with ribosomal RNA (rrnD operon) and specific transfer RNA genes (the tRNAGln/tRNAGlu cluster). It is suggested that enhanced synthesis of Glu-tRNAGlu may reflect increased demand for tetrapyrrole biosynthesis following heat-shock. Moreover, it was found that heat-shock-induced genes are significantly enriched for Gln/Glu codons relative to the whole genome, a finding that would be consistent with HspR-mediated control of the tRNA species. CONCLUSIONS: This study suggests that HspR fulfils a broader, unprecedented role in adaptation to stresses than previously recognized -- influencing expression of key components of the translational apparatus in addition to molecular chaperone and protease-encoding genes. It is envisaged that these experimentally optimized arrays will provide a key resource for systems level studies of Streptomyces biology.


Assuntos
Proteínas de Bactérias/genética , Genômica/métodos , Proteínas de Choque Térmico/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Regulon/genética , Proteínas Repressoras/genética , Streptomyces coelicolor/genética , Proteínas de Bactérias/metabolismo , Cromatina/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Genes Bacterianos , Genômica/instrumentação , Proteínas de Choque Térmico/metabolismo , Imunoprecipitação , Ligação Proteica , RNA Ribossômico/metabolismo , RNA de Transferência/genética , Proteínas Repressoras/metabolismo
13.
J Bacteriol ; 188(14): 5299-303, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16816204

RESUMO

Bacillus subtilis produces and exports a peptide sporulation killing factor (SkfA) that induces lysis of sibling cells. skfA is part of the skf operon (skfA-H), which is responsible for immunity to SkfA, as well as for production and export of SkfA. Here we report that transcription of skfA is markedly induced when cells of B. subtilis are subjected to phosphate starvation. The role of PhoP in regulation of the skf operon was confirmed by in vitro gel shift assays, which showed that this operon is a new member of the PhoP regulon. A putative stem-loop structure in the skfA-skfB intergenic region is proposed to act as a stabilizer of an skfA-specific transcript.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/biossíntese , Fosfatos/deficiência , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Sequência de Bases , Primers do DNA , Genes Reporter , Cinética , Plasmídeos , Esporos Bacterianos/fisiologia
14.
J Bacteriol ; 187(23): 8063-80, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16291680

RESUMO

Bacillus subtilis responds to phosphate starvation stress by inducing the PhoP and SigB regulons. While the PhoP regulon provides a specific response to phosphate starvation stress, maximizing the acquisition of phosphate (P(i)) from the environment and reducing the cellular requirement for this essential nutrient, the SigB regulon provides nonspecific resistance to stress by protecting essential cellular components, such as DNA and membranes. We have characterized the phosphate starvation stress response of B. subtilis at a genome-wide level using DNA macroarrays. A combination of outlier and cluster analyses identified putative new members of the PhoP regulon, namely, yfkN (2',3' cyclic nucleotide 2'-phosphodiesterase), yurI (RNase), yjdB (unknown), and vpr (extracellular serine protease). YurI is thought to be responsible for the nonspecific degradation of RNA, while the activity of YfkN on various nucleotide phosphates suggests that it could act on substrates liberated by YurI, which produces 3' or 5' phosphoribonucleotides. The putative new PhoP regulon members are either known or predicted to be secreted and are likely to be important for the recovery of inorganic phosphate from a variety of organic sources of phosphate in the environment.


Assuntos
Bacillus subtilis/fisiologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/análise , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Northern Blotting , Perfilação da Expressão Gênica , Genes Bacterianos , Análise em Microsséries , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatos , Regiões Promotoras Genéticas , Ribonucleases/análise , Ribonucleases/genética , Serina Endopeptidases/análise , Serina Endopeptidases/genética , Fator sigma/genética , Fatores de Transcrição/genética
15.
Microbiology (Reading) ; 150(Pt 8): 2619-2628, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15289558

RESUMO

During phosphate starvation, Bacillus subtilis regulates genes in the PhoP regulon to reduce the cell's requirement for this essential substrate and to facilitate the recovery of inorganic phosphate from organic sources such as teichoic and nucleic acids. Among the proteins that are highly induced under these conditions is PstS, the phosphate-binding lipoprotein component of a high-affinity ABC-type phosphate transporter. PstS is encoded by the first gene in the pst operon, the other four members of which encode the integral membrane and cytoplasmic components of the transporter. The transcription of the pst operon was analysed using a combination of methods, including transcriptional reporter gene technology, Northern blotting and DNA arrays. It is shown that the primary transcript of the pst operon is processed differentially to maintain higher concentrations of PstS relative to other components of the transporter. The comparative studies have revealed limitations in the use of reporter gene technology for analysing the transcription of operons in which the messenger RNA transcript is differentially processed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Processamento Pós-Transcricional do RNA , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Genes Reporter , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Óperon , Fosfatos/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
J Bacteriol ; 186(4): 1182-90, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14762014

RESUMO

When Bacillus subtilis is subjected to phosphate starvation, the Pho regulon is activated by the PhoP-PhoR two-component signal transduction system to elicit specific responses to this nutrient limitation. The response regulator, PhoP, and its cognate histidine sensor kinase, PhoR, are encoded by the phoPR operon that is transcribed as a 2.7-kb bicistronic mRNA. The phoPR operon is transcribed from two sigma(A)-dependent promoters, P(1) and P(2). Under conditions where the Pho regulon was not induced (i.e., phosphate-replete conditions or phoR-null mutant), a low level of phoPR transcription was detected only from promoter P(1). During phosphate starvation-induced transition from exponential to stationary phase, the expression of the phoPR operon was up-regulated in a phosphorylated PhoP (PhoP approximately P)-dependent manner; in addition to P(1), the P(2) promoter becomes active. In vitro gel shift assays and DNase I footprinting experiments showed that both PhoP and PhoP approximately P could bind to the control region of the phoPR operon. The data indicate that while low-level constitutive expression of phoPR is required under phosphate-replete conditions for signal perception and transduction, autoinduction is required to provide sufficient PhoP approximately P to induce other members of the Pho regulon. The extent to which promoters P(1) and P(2) are activated appears to be influenced by the presence of other sigma factors, possibly the result of sigma factor competition. For example, phoPR is hyperinduced in a sigB mutant and, later in stationary phase, in sigH, sigF, and sigE mutants. The data point to a complex regulatory network in which other stress responses and post-exponential-phase processes influence the expression of phoPR and, thereby, the magnitude of the Pho regulon response.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Transcrição Gênica , Bacillus subtilis/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Regulon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...