Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159466, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369253

RESUMO

Maintaining the homeostasis of the placental vasculature is of paramount importance for ensuring normal fetal growth and development. Any disruption in this balance can lead to perinatal morbidity. Several studies have uncovered an association between high levels of oxidized cholesterol (oxysterols), and complications during pregnancy, including gestational diabetes mellitus (GDM) and preeclampsia (PE). These complications often coincide with disturbances in placental vascular function. Here, we investigate the role of two oxysterols (7-ketocholesterol, 7ß-hydroxycholesterol) in (dys)function of primary fetoplacental endothelial cells (fpEC). Our findings reveal that oxysterols exert a disruptive influence on fpEC function by elevating the production of reactive oxygen species (ROS) and interfering with mitochondrial transmembrane potential, leading to its depolarization. Moreover, oxysterol-treated fpEC exhibited alterations in intracellular calcium (Ca2+) levels, resulting in the reorganization of cell junctions and a corresponding increase in membrane stiffness and vascular permeability. Additionally, we observed an enhanced adhesion of THP-1 monocytes to fpEC following oxysterol treatment. We explored the influence of activating the Liver X Receptor (LXR) with the synthetic agonist T0901317 (TO) on oxysterol-induced endothelial dysfunction in fpEC. Our results demonstrate that LXR activation effectively reversed oxysterol-induced ROS generation, monocyte adhesion, and cell junction permeability in fpEC. Although the effects on mitochondrial depolarization and calcium mobilization did not reach statistical significance, a strong trend towards stabilization of calcium mobilization was evident in LXR-activated cells. Taken together, our results suggest that high levels of systemic oxysterols link to placental vascular dysfunction and LXR agonists may alleviate their impact on fetoplacental vasculature.


Assuntos
Oxisteróis , Gravidez , Feminino , Humanos , Oxisteróis/metabolismo , Placenta/metabolismo , Receptores X do Fígado/metabolismo , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo
2.
Biomolecules ; 13(6)2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37371590

RESUMO

The placenta is the first embryonic organ, representing the connection between the embryo and the mother, and is therefore necessary for the embryo's growth and survival. To meet the ever-growing need for nutrient and gas exchange, the maternal spiral arteries undergo extensive remodeling, thus increasing the uteroplacental blood flow by 16-fold. However, the insufficient remodeling of the spiral arteries can lead to severe pregnancy-associated disorders, including but not limited to pre-eclampsia. Insufficient endovascular trophoblast invasion plays a key role in the manifestation of pre-eclampsia; however, the underlying processes are complex and still unknown. Classical histopathology is based on two-dimensional section microscopy, which lacks a volumetric representation of the vascular remodeling process. To further characterize the uteroplacental vascularization, a detailed, non-destructive, and subcellular visualization is beneficial. In this study, we use light sheet microscopy for optical sectioning, thus establishing a method to obtain a three-dimensional visualization of the vascular system in the placenta. By introducing a volumetric visualization method of the placenta, we could establish a powerful tool to deeply investigate the heterogeneity of the spiral arteries during the remodeling process, evaluate the state-of-the-art treatment options, effects on vascularization, and, ultimately, reveal new insights into the underlying pathology of pre-eclampsia.


Assuntos
Pré-Eclâmpsia , Complicações na Gravidez , Humanos , Gravidez , Feminino , Placenta/irrigação sanguínea , Pré-Eclâmpsia/patologia , Microscopia , Trofoblastos/patologia , Artérias/patologia
3.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743292

RESUMO

The metabolic state of pregnant women and their unborn children changes throughout pregnancy and adapts to the specific needs of each gestational week. These adaptions are accomplished by the actions of enzymes, which regulate the occurrence of their endogenous substrates and products in all three compartments: mother, placenta and the unborn. These enzymes determine bioactive lipid signaling, supply, and storage through the generation or degradation of lipids and fatty acids, respectively. This review focuses on the role of lipid-metabolizing serine hydrolases during normal pregnancy and in pregnancy-associated pathologies, such as preeclampsia, gestational diabetes mellitus, or preterm birth. The biochemical properties of each class of lipid hydrolases are presented, with special emphasis on their role in placental function or dysfunction. While, during a normal pregnancy, an appropriate tonus of bioactive lipids prevails, dysregulation and aberrant signaling occur in diseased states. A better understanding of the dynamics of serine hydrolases across gestation and their involvement in placental lipid homeostasis under physiological and pathophysiological conditions will help to identify new targets for placental function in the future.


Assuntos
Placenta , Nascimento Prematuro , Ácidos Graxos/metabolismo , Feminino , Homeostase , Humanos , Hidrolases/metabolismo , Recém-Nascido , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Serina/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 323(1): H72-H88, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452318

RESUMO

`The entire maternal circulation adapts to pregnancy, and this adaption is particularly extensive in the uterine circulation where the major vessels double in size to facilitate an approximately 15-fold increase in blood supply to this organ over the course of pregnancy. Several factors may play a role in both the remodeling and biomechanical function of the uterine vasculature including the paracrine microenvironment, passive properties of the vessel wall, and active components of vascular function (incorporating the myogenic response and response to shear stress induced by intravascular blood flow). However, the interplay between these factors and how this plays out in an organ-specific manner to induce the extent of remodeling observed in the uterus is not well understood. Here we present an integrated assessment of the uterine radial arteries, likely rate limiters to the flow of oxygenated maternal blood to the placental surface, via computational modeling and pressure myography. We show that uterine radial arteries behave differently to other systemic vessels (higher compliance and shear-mediated constriction) and that their properties change with the adaptation to pregnancy (higher myogenic tone, higher compliance, and ability to tolerate higher flow rates before constricting). Together, this provides a useful tool to improve our understanding of the role of uterine vascular adaptation in normal and abnormal pregnancies and highlights the need for vascular bed-specific investigations of vascular function in health and disease.NEW & NOTEWORTHY To our knowledge, this is the first data-driven computational model of autoregulation of uterine radial arteries, likely rate limiters of maternal blood flow to the placenta. The study demonstrates that uterine radial arteries behave differently from systemic vessels (higher compliance, shear-mediated constriction) and change in pregnancy (higher myogenic tone, higher compliance, tolerance of higher flow rates). This pregnancy-specific mathematical model of vascular reactivity allows interrogation of the functional significance of incomplete vascular adaption in pathology.


Assuntos
Placenta , Artéria Radial , Feminino , Humanos , Placenta/irrigação sanguínea , Circulação Placentária , Gravidez , Artéria Uterina/fisiologia , Útero/irrigação sanguínea
5.
Placenta ; 125: 68-77, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34819240

RESUMO

Early placental development lays the foundation of a healthy pregnancy, and numerous tightly regulated processes must occur for the placenta to meet the increasing nutrient and oxygen exchange requirements of the growing fetus later in gestation. Inadequacies in early placental development can result in disorders such as fetal growth restriction that do not present clinically until the second half of gestation. Indeed, growth restricted placentae exhibit impaired placental development and function, including reduced overall placental size, decreased branching of villi and the blood vessels within them, altered trophoblast function, and impaired uterine vascular remodelling, which together combine to reduce placental exchange capacity. This review explores the importance of early placental development across multiple anatomical aspects of placentation, from the stem cells and lineage hierarchies from which villous core cells and trophoblasts arise, through extravillous trophoblast invasion and spiral artery remodelling, and finally remodelling of the larger uterine vessels.


Assuntos
Placenta , Placentação , Artérias , Feminino , Humanos , Placenta/irrigação sanguínea , Gravidez , Células-Tronco , Trofoblastos
6.
Hum Reprod ; 36(3): 571-586, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33600565

RESUMO

STUDY QUESTION: What is the physiological extent of vascular remodelling in and trophoblast plugging of the uterine circulation across the first half of pregnancy? SUMMARY ANSWER: All levels of the uterine vascular tree (arcuate, radial and spiral arteries (SAs)) dilate ∼2.6- to 4.3-fold between 6 and 20 weeks of gestation, with significant aggregates of trophoblasts persisting in the decidual and myometrial parts of SAs beyond the first trimester. WHAT IS KNOWN ALREADY: In early pregnancy, endovascular trophoblasts form 'plugs' in the SAs, transiently inhibiting blood flow to the placenta, whilst concurrently the uterine vasculature undergoes significant adaption to facilitate increased blood delivery to the placenta later in gestation. These processes are impaired in pregnancy disorders, but quantitative understanding of the anatomical changes even in normal pregnancy is poor. STUDY DESIGN, SIZE, DURATION: Serial sections of normal placentae in situ (n = 22) of 6.1-20.5 weeks of gestation from the Boyd collection and Dixon collection (University of Cambridge, UK) were digitalized using a slide scanner or Axio Imager.A1 microscope. PARTICIPANTS/MATERIALS, SETTING, METHODS: Spiral (n = 45), radial (n = 40) and arcuate (n = 39) arteries were manually segmented. Using custom-written scripts for Matlab® software, artery dimensions (Feret diameters; major axes; luminal/wall area) and endovascular trophoblast plug/aggregate (n = 24) porosities were calculated. Diameters of junctional zone SAs within the myometrium (n = 35) were acquired separately using a micrometre and light microscope. Decidual thickness and trophoblast plug depth was measured using ImageJ. MAIN RESULTS AND THE ROLE OF CHANCE: By all measures, radial and arcuate artery dimensions progressively increased from 6.1 to 20.5 weeks (P < 0.01). The greatest increase in SA calibre occurred after 12 weeks of gestation. Trophoblast aggregates were found to persist within decidual and myometrial parts of SA lumens beyond the first trimester, and up to 18.5 weeks of gestation, although those present in the second trimester did not appear to prevent the passage of red blood cells to the intervillous space. Trophoblasts forming these aggregates became more compact (decreased in porosity) over gestation, whilst channel size between cells increased (P = 0.01). Decidual thickness decreased linearly over gestation (P = 0.0003), meaning plugs occupied an increasing proportion of the decidua (P = 0.02). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Although serial sections were assessed, two-dimensional images cannot completely reflect the three-dimensional properties and connectivity of vessels and plugs/aggregates. Immersion-fixation of the specimens means that vessel size may be under-estimated. WIDER IMPLICATIONS OF THE FINDINGS: Uterine vascular remodelling and trophoblast plug dispersion is a progressive phenomenon that is not completed by the end of the first trimester. Our quantitative findings support the concept that radial arteries present a major site of resistance until mid-gestation. Their dimensional increase at 10-12 weeks of gestation may explain the rapid increase in blood flow to the placenta observed by others at ∼13 weeks. Measured properties of trophoblast plugs suggest that they will impact on the resistance, shear stress and nature of blood flow within the utero-placental vasculature until mid-gestation. The presence of channels within plugs will likely lead to high velocity flow streams and thus increase shear stress experienced by the trophoblasts forming the aggregates. Quantitative understanding of utero-placental vascular adaptation gained here will improve in silico modelling of utero-placental haemodynamics and provide new insights into pregnancy disorders, such as fetal growth restriction. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by a Royal Society Te Aparangi Marsden Grant [18-UOA-135]. A.R.C. is supported by a Rutherford Discovery Fellowship [14-UOA-019]. The authors have no conflict of interest to declare.


Assuntos
Circulação Placentária , Trofoblastos , Decídua , Feminino , Humanos , Placenta , Gravidez , Primeiro Trimestre da Gravidez , Remodelação Vascular
7.
Reprod Biol ; 19(4): 412-420, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31806575

RESUMO

Von Willebrand disease (VWD) affects blood coagulation and correlates with angiodysplasia. Data on VWD-affected women point to slightly increased miscarriage rates. We aimed to investigate the impact of VWD on angiogenesis in the uteroplacental unit of pregnant pigs of a model of VWD type 1 (T1). Uteri, placentae, and embryos were harvested at time of placentation (day 29 to 31) from four sows (two wildtype (WT) and two heterozygous for a von Willebrand factor (VWF) mutation diagnosed with T1). T1 sows were bred to a T1 boar creating embryos of three different genotypes: WT, T1 or homozygous for the VWF mutation corresponding with VWD type 3 (T3). Uteroplacental tissues were examined histologically. Embryos were genotyped. Gene expression of angiogenic factors possibly related to VWF was determined by quantitative real-time PCR. Corresponding protein expression was analyzed by immunohistochemistry. Genotyping revealed 35.3% WT, 52.9% T1 and 5.9% T3 embryos (5.9% not classified confidently). No histological alterations were found. Gene expression of VEGF was significantly increased in T1 placentae while expression of ANG1, ANG2, TIE2, and ITGB3 was significantly reduced, confirmed on protein level for different cell types. TIE2/TIE1 ratios were significantly lower in T1 placentae. Distribution of embryo genotypes indicates selection favoring the WT. Significant expression differences of angiogenic factors in placentae suggest influence of VWF on these factors during placentation, although angiodysplasia was not observed. The alterations concerning VEGF/VEGFR-2 signaling, integrin expression and the ANG/TIE system may influence angiogenesis and vascular adaptation during placentation and thus the overall outcome of pregnancy.


Assuntos
Proteínas Angiogênicas/metabolismo , Placenta/metabolismo , Placentação , Útero/metabolismo , Doença de von Willebrand Tipo 1/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Gravidez , Suínos
8.
Comp Med ; 69(5): 401-412, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31526432

RESUMO

Von Willebrand disease (VWD), a blood coagulation disorder, is also known to cause angiodysplasia. Hitherto, no animal model has been found with angiodysplasia that can be studied in vivo. In addition, VWD patients tend to have a higher incidence of miscarriages for reasons unknown. Thus, we aimed to examine the influence of von Willebrand factor (VWF) on the female reproductive tract histology and the expression and distribution of angiogenic factors in a porcine model for VWD types 1 and 3. The disease-causing tandem duplication within the VWF gene occurred naturally in these pigs, making them a rare and valuable model. Reproductive organs of 6 animals (2 of each mutant genotype and 2 wildtype (WT) animals) were harvested. Genotype plus phenotype were confirmed. Several angiogenic factors were chosen for possible connections to VWF and analyzed alongside VWF by immunohistochemistry and quantitative gene expression studies. VWD type 3 animals showed angiodysplasia in the uterus and shifting of integrin αVß3 from the apical membrane of uterine epithelium to the cytoplasm accompanied by increased vascular endothelial growth factor (VEGF) expression. Varying staining patterns for angiopoietin (Ang)-2 were observed among the genotypes. As compared with WT, the ovaries of the VWD type 3 animals showed decreased gene expression of ANG2 and increased gene expression of TIE (tyrosine kinase with immunoglobulin and epidermal growth factor homology domains) 2, with some differences in the ANG/TIE-system among the mutant genotypes. In conclusion, severely reduced VWF seems to evoke angiodysplasia in the porcine uterus. Varying distribution and expression of angiogenic factors suggest that this large animal model is promising for investigation of influence of VWF on angiogenesis in larger groups.


Assuntos
Modelos Animais de Doenças , Suínos/genética , Doenças de von Willebrand/genética , Moduladores da Angiogênese/farmacologia , Animais , Genótipo , Humanos , Fenótipo , Receptor de TIE-1 , Receptor TIE-2 , Fator de von Willebrand
9.
G3 (Bethesda) ; 8(2): 577-585, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29208651

RESUMO

Von Willebrand Disease (VWD) type 3 is a serious and sometimes fatal hereditary bleeding disorder. In pigs, the disease has been known for decades, and affected animals are used as models for the human disease. Due to the recessive mode of inheritance of VWD type 3, severe bleeding is typically seen in homozygous individuals. We sequenced the complete porcine VWF (Von Willebrand Factor) complementary DNA (cDNA) and detected a tandem duplication of exons 17 and 18, causing a frameshift and a premature termination codon (p.Val814LeufsTer3) in the affected pig. Subsequent next generation sequencing on genomic DNA proved the existence of a 12.3-kb tandem duplication associated with VWD. This duplication putatively originates from porcine Short Interspersed Nuclear Elements (SINEs) located within VWF introns 16 and 18 with high identity. The premature termination truncates the VWF open reading frame by a large part, resulting in an almost entire loss of the mature peptide. It is therefore supposed to account for the severe VWD type 3. Our results further indicate the presence of strong, nonsense-mediated decay in VWF messenger RNA (mRNA) containing the duplication, which was supported by the almost complete absence of the complete VWF protein in immunohistochemistry analysis of the VWD-affected pig. In the past, differentiation of wild-type and heterozygous pigs in this VWD colony had to rely on clinical examinations and additional laboratory methods. The present study provides the basis to distinguish both genotypes by performing a rapid and simple genetic analysis.


Assuntos
Duplicação Gênica , Predisposição Genética para Doença/genética , Doenças dos Suínos/genética , Suínos/genética , Doenças de von Willebrand/genética , Fator de von Willebrand/genética , Animais , Sequência de Bases , Códon sem Sentido/genética , Éxons/genética , Mutação da Fase de Leitura , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...