Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374896

RESUMO

Ectomycorrhizas (ECM) are a common symbiotic association between fungi and various plant species in forest ecosystems, affecting community assemblages at the landscape level. ECMs benefit host plants by increasing the surface area for nutrient uptake, defending against pathogens, and decomposing organic matter in the soil. ECM-symbiotic seedlings are also known to perform better in conspecific soils than other species unable to carry the symbiosis, in a process referred to as plant-soil feedback (PSF). In this study, we tested the effects of different leaf litter amendments on ECM and non-ECM seedlings of Quercus ilex inoculated with Pisolithus arrhizus and how they altered the litter-induced PSF. Our experiment showed that the ECM symbiont induced a shift from negative PSF to positive PSF in Q. ilex seedlings by analysing plant and root growth parameters. However, non-ECM seedlings performed better than ECM seedlings in a no-litter condition, indicating an autotoxic effect when litter is present without ECM symbionts. Conversely, ECM seedlings with litter performed better at different decomposition stages, suggesting a possible role of the symbiosis of P. arrhizus and Q. ilex in recycling autotoxic compounds released from conspecific litter, transforming them into nutrients that are transferred to the plant host.

2.
Ecol Evol ; 13(1): e9733, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36694545

RESUMO

Deciphering the spatial patterns of alpine treelines is critical for understanding the ecosystem processes involved in the persistence of tree species and their altitudinal limit. Treelines are thought to be controlled by temperature, and other environmental variables but they have rarely been investigated in regions with different land-use change legacies. Here, we systematically investigated treeline elevation in the Apennines (Italy) and Southern Alps (New Zealand) with contrasting human history but similar biogeographic trajectories, intending to identify distinct drivers that affect their current elevation and highlight their respective peculiarities. Over 3622 km of Apennines, treeline elevation was assessed in 302 mountain peaks and in 294 peaks along 4504 km of Southern Alps. The major difference between the Southern Alps and Apennines treeline limit is associated with their mountain aspects. In the Southern Alps, the scarcely anthropized Nothofagus treeline elevation was higher on the warmer equator-facing slopes than on the pole-facing ones. Contrary to what would be expected based on temperature limitation, the elevation of Fagus sylvatica treelines in the Apennines was higher on colder, pole-facing slopes than on human-shaped equator-facing, warmer mountainsides. Pervasive positive correlations were found between treeline elevation and temperature in the Southern Alps but not in the Apennines. While the position of the Fagus and Nothofagus treelines converge on similar isotherms of annual average temperature, a striking isothermal difference between the temperatures of the hottest month on which the two taxonomic groups grow exists. We conclude that actual treeline elevation reflects the ecological processes driven by a combination of local-scale topoclimatic conditions, and human disturbance legacy. Predicting dynamic processes affecting current and future alpine treeline position requires further insight into the modulating influences that are currently understood at a regional scale.

3.
Front Plant Sci ; 13: 947166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186043

RESUMO

Past anthropogenic disturbances lowered the altitudinal distribution of the Mediterranean Fagus sylvatica forests below 2,000 m a.s.l. Accordingly, our current understanding of the southern distribution range of F. sylvatica forests is restricted to managed stands below this elevation, neglecting relic forests growing above. This study has shed light on the structure and species assemblage of an unmanaged relict subalpine F. sylvatica stand growing within the core of its southernmost glacial refugia and at its highest species range elevation limit (2,140 m a.s.l.) in southern Apennines (Italy). Here, tree biometric attributes and understory species abundances were assessed in eight permanent plots systematically positioned from 1,650 to 2,130 m a.s.l. In the subalpine belt, F. sylvatica had formed a dense clonal stem population that was layered downward on the steepest slopes. The density and spatial aggregation of the stems were increased, while their stature and crown size were decreased. Above 2,000 m, changes in tree growth patterns, from upright single-stemmed to procumbent multi-stemmed, and canopy layer architecture, with crowns packed and closer to the floor, were allowed for the persistence of understory herbaceous species of biogeographic interest. Clonal layering represents an adaptive regeneration strategy for the subalpine belt environmental constraints not previously recognized in managed Mediterranean F. sylvatica forests. The clonal structure and unique species assemblage of this relic forest highlight the value of its inclusion in the priority areas networks, representing a long-term management strategy of emblematic glacial and microclimatic refugia.

4.
Sci Rep ; 11(1): 8122, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854197

RESUMO

Understanding processes controlling forest dynamics has become particularly important in the context of ongoing climate change, which is altering the ecological fitness and resilience of species worldwide. However, whether forest communities would be threatened by projected macroclimate change or unaffected due to the controlling effect of local site conditions is still a matter for debate. After all, forest canopy buffer climate extremes and promote microclimatic conditions, which matters for functional plant response, and act as refugia for understory species in a changing climate. Yet precisely how microclimatic conditions change in response to climate warming will depend on the extent to which vegetation structure and local topography shape air and soil temperature. In this study, we posited that forest microclimatic buffering is sensitive to local topographic conditions and canopy cover, and using meteorological stations equipped with data-loggers we measured this effect during 1 year across a climate gradient (considering aspect as a surrogate of local topography) in a Mediterranean beech treeline growing in contrasting aspects in southern Italy. During the growing season, the below-canopy near-ground temperatures were, on average, 2.4 and 1.0 °C cooler than open-field temperatures for south and north-west aspects, respectively. Overall, the temperature offset became more negative (that is, lower under-canopy temperatures at the treeline) as the open-field temperature increased, and more positive (that is, higher under-canopy temperatures at the treeline) as the open-field temperature decreased. The buffering effect was particularly evident for the treeline on the south-facing slope, where cooling of near-ground temperature was as high as 8.6 °C for the maximum temperature (in August the offset peaked at 10 °C) and as high as 2.5 °C for the average temperature. In addition, compared to the south-facing slope, the northern site exhibited less decoupling from free-air environment conditions and low variability in microclimate trends that closely track the free-air biophysical environment. Although such a decoupling effect cannot wholly isolate forest climatic conditions from macroclimate regional variability in the south-facing treeline, it has the potential to partly offset the regional macroclimatic warming experienced in the forest understory due to anthropogenic climate change.

5.
Front Plant Sci ; 8: 1160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713415

RESUMO

Post-fire reproductive niche of Aleppo pine (Pinus halepensis) is deeply interlaced with fire products. Indeed, the high pH and low osmotic potentials of ash beds under burnt crowns constitute the main constraints to seed germination. In this study, we aim to investigate whether fire recurrence, through the physico-chemical constraints imposed by the ash beds, affects the reproduction ability of P. halepensis at the germination stage. To this aim, Aleppo pine seeds were collected in neighboring even-aged stands subjected to 0, 1, or 2 fires (namely fire cohorts), and seed morphology and germination performance, in terms of cumulative germination and germination kinetics, were studied under increasing osmotic potentials (from 0.0 to -1.2 MPa) and pH (from 6 to 11). Besides fire history, the role of ontogenetic age of mother plants on seed morphology and germination was also investigated. Differences in seed morphology among the three cohorts have been highlighted in a multivariate context, with anisotropic enlargement of the seeds produced by pine stands experiencing repeated fires. The patterns of seed germination varied primarily in relation to the fire cohort, with seeds from the pine stand experiencing repeated fires exhibiting enhanced tolerance to pH stress. Conversely, germination performances under osmotic constraints mainly depends on tree ontogenetic stage, with an involvement of fire history especially in the timing of seed germination. Our results suggest that, at least in the short term, fire recurrence does not constrain the reproduction ability of Aleppo pine. These results highlight the need for further research to elucidate the mechanisms behind these responses to recurrent fires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...