Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3797, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365175

RESUMO

Achieving high solar-to-hydrogen (STH) efficiency concomitant with long-term durability using low-cost, scalable photo-absorbers is a long-standing challenge. Here we report the design and fabrication of a conductive adhesive-barrier (CAB) that translates >99% of photoelectric power to chemical reactions. The CAB enables halide perovskite-based photoelectrochemical cells with two different architectures that exhibit record STH efficiencies. The first, a co-planar photocathode-photoanode architecture, achieved an STH efficiency of 13.4% and 16.3 h to t60, solely limited by the hygroscopic hole transport layer in the n-i-p device. The second was formed using a monolithic stacked silicon-perovskite tandem, with a peak STH efficiency of 20.8% and 102 h of continuous operation before t60 under AM 1.5G illumination. These advances will lead to efficient, durable, and low-cost solar-driven water-splitting technology with multifunctional barriers.

2.
Sci Rep ; 12(1): 1303, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079047

RESUMO

Aptamers, due to their small size, strong target affinity, and ease of chemical modification, are ideally suited for molecular detection technologies. Here, we describe successful use of aptamer technology in a consumer device for the detection of peanut antigen in food. The novel aptamer-based protein detection method is robust across a wide variety of food matrices and sensitive to peanut protein at concentrations as low as 12.5 ppm (37.5 µg peanut protein in the sample). Integration of the assay into a sensitive, stable, and consumer friendly portable device will empower users to easily and quickly assess the presence of peanut allergens in foods before eating. With many food reactions occurring outside the home, the type of technology described here has significant potential to improve lives for children and families.


Assuntos
Alérgenos/análise , Alérgenos/imunologia , Antígenos de Plantas/análise , Antígenos de Plantas/imunologia , Aptâmeros de Nucleotídeos/metabolismo , Arachis/química , Análise de Alimentos/métodos , Hipersensibilidade Alimentar/prevenção & controle , Proteínas de Membrana/análise , Proteínas de Membrana/imunologia , Proteínas de Plantas/análise , Proteínas de Plantas/imunologia , Testes Imediatos , Humanos , Ligação Proteica , Sensibilidade e Especificidade
3.
ACS Nano ; 8(3): 2714-24, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24548131

RESUMO

Lateral organic field-effect transistors (OFETs), consisting of a polystyrene (PS) polymer gate material and a pentacene organic semiconductor (OSC), were electrically polarized from bias stress during operation or in a separate charging step, and investigated with scanning Kelvin probe microscopy (SKPM) and current-voltage determinations. The charge storage inside the polymer was indicated, without any alteration of the OFET, as a surface voltage with SKPM, and correlated to a threshold voltage (VT) shift in the transistor operation. The SKPM method allows the gate material/OSC interface of the OFET to be visualized and the surface voltage variation between the two gate material interfaces to be mapped. The charge distribution for three samples was derived from the surface voltage maps using Poisson's equation. Charge densities calculated this way agreed with those derived from the VT shifts and the lateral gate-OSC capacitance. We also compared the behavior of two other polymers with PS: PS accepted the most static charge in its entire volume, poly(2-trifluoromethylstyrene) (F-PS) had the most stability to bias stress, and poly(methyl methacrylate) (PMMA) showed the most leakage current and least consistent response to static charging of the three polymers. This work provides a clear demonstration that surface voltage on a working OFET gate material can be related to the quantity of static charge responsible for bias stress and nonvolatility in OFETs.

4.
J Org Chem ; 74(6): 2344-9, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19245202

RESUMO

The conformational equilibrium of 3-(dimethylazinoyl)propanoic acid (DMAPA, azinoyl = N(+)(O(-)) has a weak pH-dependence in D(2)O, with a slight preference for trans in alkaline solutions. The acid ionization constants of the protonated amine oxide and carboxylic functional groups as determined by NMR spectroscopy were 7.9 x 10(-4) and 6.3 x 10(-6), respectively. The corresponding value of K(1)/K(2) of 1.3 x 10(2) is not deemed large enough to provide experimental NMR evidence for a significant degree of intramolecular hydrogen bonding in D(2)O. Conformational preferences of DMAPA are mostly close to statistical (gauche/trans = 2/1) in other protic solvents, e.g., alcohols. However, the un-ionized form of DMAPA appears to be strongly intramolecularly hydrogen-bonded and gauche in aprotic solvents.


Assuntos
Ligação de Hidrogênio , Propionatos/química , Concentração de Íons de Hidrogênio , Conformação Molecular , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...