Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 24(7): e13959, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37147912

RESUMO

BACKGROUND AND PURPOSE: Anatomic changes during head and neck radiotherapy can impact dose delivery, necessitate adaptive replanning, and indicate patient-specific response to treatment. We have developed an automated system to track these changes through longitudinal MRI scans to aid identification and clinical intervention. The purpose of this article is to describe this tracking system and present results from an initial cohort of patients. MATERIALS AND METHODS: The Automated Watchdog in Adaptive Radiotherapy Environment (AWARE) was developed to process longitudinal MRI data for radiotherapy patients. AWARE automatically identifies and collects weekly scans, propagates radiotherapy planning structures, computes structure changes over time, and reports important trends to the clinical team. AWARE also incorporates manual structure review and revision from clinical experts and dynamically updates tracking statistics when necessary. AWARE was applied to patients receiving weekly T2-weighted MRI scans during head and neck radiotherapy. Changes in nodal gross tumor volume (GTV) and parotid gland delineations were tracked over time to assess changes during treatment and identify early indicators of treatment response. RESULTS: N = 91 patients were tracked and analyzed in this study. Nodal GTVs and parotids both shrunk considerably throughout treatment (-9.7 ± 7.7% and -3.7 ± 3.3% per week, respectively). Ipsilateral parotids shrunk significantly faster than contralateral (-4.3 ± 3.1% vs. -2.9 ± 3.3% per week, p = 0.005) and increased in distance from GTVs over time (+2.7 ± 7.2% per week, p < 1 × 10-5 ). Automatic structure propagations agreed well with manual revisions (Dice = 0.88 ± 0.09 for parotids and 0.80 ± 0.15 for GTVs), but for GTVs the agreement degraded 4-5 weeks after the start of treatment. Changes in GTV volume observed by AWARE as early as one week into treatment were predictive of large changes later in the course (AUC = 0.79). CONCLUSION: AWARE automatically identified longitudinal changes in GTV and parotid volumes during radiotherapy. Results suggest that this system may be useful for identifying rapidly responding patients as early as one week into treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética , Humanos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Pescoço , Planejamento da Radioterapia Assistida por Computador/métodos , Cabeça , Dosagem Radioterapêutica
2.
Phys Imaging Radiat Oncol ; 19: 96-101, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34746452

RESUMO

BACKGROUND AND PURPOSE: Reducing trismus in radiotherapy for head and neck cancer (HNC) is important. Automated deep learning (DL) segmentation and automated planning was used to introduce new and rarely segmented masticatory structures to study if trismus risk could be decreased. MATERIALS AND METHODS: Auto-segmentation was based on purpose-built DL, and automated planning used our in-house system, ECHO. Treatment plans for ten HNC patients, treated with 2 Gy × 35 fractions, were optimized (ECHO0). Six manually segmented OARs were replaced with DL auto-segmentations and the plans re-optimized (ECHO1). In a third set of plans, mean doses for auto-segmented ipsilateral masseter and medial pterygoid (MIMean, MPIMean), derived from a trismus risk model, were implemented as dose-volume objectives (ECHO2). Clinical dose-volume criteria were compared between the two scenarios (ECHO0 vs. ECHO1; ECHO1 vs. ECHO2; Wilcoxon signed-rank test; significance: p < 0.01). RESULTS: Small systematic differences were observed between the doses to the six auto-segmented OARs and their manual counterparts (median: ECHO1 = 6.2 (range: 0.4, 21) Gy vs. ECHO0 = 6.6 (range: 0.3, 22) Gy; p = 0.007), and the ECHO1 plans provided improved normal tissue sparing across a larger dose-volume range. Only in the ECHO2 plans, all patients fulfilled both MIMean and MPIMean criteria. The population median MIMean and MPIMean were considerably lower than those suggested by the trismus model (ECHO0: MIMean = 13 Gy vs. ≤42 Gy; MPIMean = 29 Gy vs. ≤68 Gy). CONCLUSIONS: Automated treatment planning can efficiently incorporate new structures from DL auto-segmentation, which results in trismus risk sparing without deteriorating treatment plan quality. Auto-planning and deep learning auto-segmentation together provide a powerful platform to further improve treatment planning.

3.
Phys Med Biol ; 65(23): 235011, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33007769

RESUMO

During radiation therapy (RT) of head and neck (HN) cancer, the shape and volume of the parotid glands (PG) may change significantly, resulting in clinically relevant deviations of delivered dose from the planning dose. Early and accurate longitudinal prediction of PG anatomical changes during the RT can be valuable to inform decisions on plan adaptation. We developed a deep neural network for longitudinal predictions using the displacement fields (DFs) between the planning computed tomography (pCT) and weekly cone beam computed tomography (CBCT). Sixty-three HN patients treated with volumetric modulated arc were retrospectively studied. We calculated DFs between pCT and week 1-3 CBCT by B-spline and Demon deformable image registration (DIR). The resultant DFs were subsequently used as input to our novel network to predict the week 4 to 6 DFs for generating predicted weekly PG contours and weekly dose distributions. For evaluation, we measured dice similarity (DICE), and the uncertainty of accumulated dose. Moreover, we compared the detection accuracies of candidates for adaptive radiotherapy (ART) when the trigger criteria were mean dose difference more than 10%, 7.5%, and 5%, respectively. The DICE of ipsilateral/contralateral PG at week 4 to 6 using the prediction model trained with B-spline were 0.81 [Formula: see text] 0.07/0.81 [Formula: see text] 0.04 (week 4), 0.79 [Formula: see text] 0.06/0.81 [Formula: see text] 0.05 (week 5) and 0.78 [Formula: see text] 0.06/0.82 [Formula: see text] (week 6). The DICE with the Demons model were 0.78 [Formula: see text] 0.08/0.82 [Formula: see text] 0.03 (week 4), 0.77 [Formula: see text] 0.07/0.82 [Formula: see text] 0.04 (week 5) and 0.75 [Formula: see text] 0.07/0.82 [Formula: see text] 0.02 (week 6). The dose volume histogram (DVH) analysis with the predicted accumulated dose showed the feasibility of predicting dose uncertainty due to the PG anatomical changes. The AUC of ART candidate detection with our predictive model was over 0.90. In conclusion, the proposed network was able to predict future anatomical changes and dose uncertainty of PGs with clinically acceptable accuracy, and hence can be readily integrated into the ART workflow.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Glândula Parótida/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...