Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 19(3): 36004, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24599086

RESUMO

Quantification of cell proliferation and monitoring its kinetics are essential in fields of research such as developmental biology, oncology, etc. Although several proliferation assays exist, monitoring cell proliferation kinetics remains challenging. We present a novel cell proliferation assay based on real-time monitoring of cell culture inside a standard incubator using a lensfree video-microscope, combined with automated detection of single cell divisions over a population of several thousand cells. Since the method is based on direct visualization of dividing cells, it is label-free, continuous, and not sample destructive. Kinetics of cell proliferation can be monitored from a few hours to several days. We compare our method to a standard assay, the EdU proliferation assay, and as proof of principle, we demonstrate concentration-dependent and time-dependent effect of actinomycin D-a cell proliferation inhibitor.


Assuntos
Proliferação de Células , Técnicas Citológicas/instrumentação , Técnicas Citológicas/métodos , Microscopia de Vídeo/instrumentação , Microscopia de Vídeo/métodos , Animais , Células Cultivadas , Cinética , Camundongos , Células NIH 3T3
2.
Nat Photonics ; 7(3)2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24358054

RESUMO

The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.

3.
ACS Nano ; 7(9): 7601-9, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23889001

RESUMO

The physical interaction between nanoscale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with subwavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing submicrometer or nanoscale particles creates liquid microlenses that arise from the local deformations of the continuous wetting film. These microlenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low-magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nanoparticles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nanoparticles (100 and 200 nm), CpGV granuloviruses, as well as Staphylococcus epidermidis bacteria over a wide field-of-view of 5.10 × 3.75 mm(2) using a 5× objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting-film-based approach is also applicable to lens-free computational on-chip imaging, which can be used to detect single nanoparticles over a large field-of-view of >20-30 mm(2). These results could be especially useful for high-throughput field analysis of nanoscale objects using compact and cost-effective microscope designs.


Assuntos
Granulovirus/ultraestrutura , Aumento da Imagem/instrumentação , Lentes , Membranas Artificiais , Microscopia/instrumentação , Nanopartículas/química , Staphylococcus epidermidis/citologia , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Molhabilidade
4.
Biosens Bioelectron ; 36(1): 230-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565093

RESUMO

Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few µL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown.


Assuntos
DNA/análise , Monitoramento Ambiental/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Adenovírus Humanos/isolamento & purificação , Bacillus subtilis/isolamento & purificação , Baculoviridae/isolamento & purificação , Escherichia coli/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Streptococcus pneumoniae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...