Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Biomech ; 38(1): 47-57, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045388

RESUMO

This study quantified head impact exposures for Canadian university football players over their varsity career. Participants included 63 players from one team that participated in a minimum of 3 seasons between 2013 and 2018. A total of 127,192 head impacts were recorded from 258 practices and 65 games. The mean (SD) number of career impacts across all positions was 2023.1 (1296.4), with an average of 37.1 (20.3) impacts per game and 7.4 (4.4) impacts per practice. The number of head impacts that players experienced during their careers increased proportionally to the number of athletic exposures (P < .001, r = .57). Linebackers and defensive and offensive linemen experienced significantly more head impacts than defensive backs, quarterbacks, and wide receivers (P ≤ .014). Seniority did not significantly affect the number of head impacts a player experienced. Mean linear acceleration increased with years of seniority within defensive backs and offensive linemen (P ≤ .01). Rotational velocity increased with years of seniority within defensive backs, defensive and offensive linemen, running backs, and wide receivers (P < .05). These data characterize career metrics of head impact exposure for Canadian university football players and provide insights to reduce head impacts through rule modifications and contact regulations.


Assuntos
Concussão Encefálica , Futebol Americano , Corrida , Aceleração , Canadá , Humanos , Universidades
2.
Neurotrauma Rep ; 2(1): 354-362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901935

RESUMO

Head impacts in soccer have been associated with both short- and long-term neurological consequences. Youth players' brains are especially vulnerable given that their brains are still developing, and females are at an increased risk of traumatic brain injury (TBI) compared to males. Approximately 90% of head impacts in soccer occur from purposeful heading. Accordingly, this study assessed the relationship between kinematic variables and brain strain during purposeful headers in female youth soccer players. A convenience sample of 36 youth female soccer players (13.4 [0.9] years of age) from three elite youth soccer teams wore wireless sensors to quantify head impact magnitudes during games. Purposeful heading events were categorized by game scenario (e.g., throw-in, goal kick) for 60 regular season games (20 games per team). A total of 434 purposeful headers were identified. Finite element model simulations were performed to calculate average peak maximum principal strain (APMPS) in the corpus callosum, thalamus, and brainstem on a subset of 110 representative head impacts. Rotational velocity was strongly associated with APMPS in these three regions of the brain (r = 0.83-0.87). Linear acceleration was weakly associated with APMPS (r = 0.13-0.31). Game scenario did not predict APMPS during soccer games (p > 0.05). Results demonstrated considerable APMPS in the corpus callosum (mean = 0.102) and thalamus (mean = 0.083). In addition, the results support the notion that rotational velocity is a better predictor of brain strain than linear acceleration and may be a potential indicator of changes to the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...