Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400389, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923732

RESUMO

The correlation between the CCL20/CCR6 axis and autoimmune and non-autoimmune disorders is widely recognized. Inhibition of the CCL20-dependent cell migration represents therefore a promising approach for the treatment of many diseases, such as inflammatory bowel diseases and colorectal cancer. We report herein our efforts to explore the biologically relevant chemical space around the benzofuran scaffold of MR120, a modulator of the CCL20/CCR6 axis previously discovered by our group. A functional screening allowed us to identify C4 and C5-substituted derivatives as the most effective inhibitors of the CCL20-induced chemotaxis of human peripheral blood mononuclear cells (PBMC). Moreover, selected compounds (16e and 24b) also proved to potently inhibit the growth of different colon cancer cell lines, with cytotoxic/cytostatic and antiproliferative activity.

2.
Eur J Pharmacol ; 945: 175613, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841282

RESUMO

Concerning the growing interest in the role played by the CCL20/CCR6 axis in IBD pathogenesis and in the search for novel anti-IBD small molecules, we have recently discovered the first small-molecule (MR120) endowed with protective action against TNBS-induced colitis and zymosan-induced peritonitis. This protective action occurs through interference with the CCL20/CCR6 signaling. The aim of the present work is to expand the preclinical investigation of MR120, evaluating its beneficial anti-inflammatory effect on a model of chronic colitis obtained by cyclically exposing C57BL/6 mice to 3% DSS. Subcutaneous administration of MR120 at 1 mg/kg, the same dose effective against acute inflammation, helped attenuate several systemic and local inflammatory responses induced by DSS. Besides significantly improving murine health conditions, MR120 counteracted mucosal macroscopic injury, the increase of colonic edema and neutrophils oxidative activity, and mitigated spleen enlargement, while not significantly lowering intestinal IL-6 concentration. Overall, repeated daily treatment with MR120 for approximately 30 days was well tolerated and showed moderate protection in a relevant model of chronic colitis, in line with the beneficial effect previously observed in acute models of intestinal inflammation. Although more potent analogues of MR120 will be needed to more fully evaluate their clinical translatability, the present work provides a valuable example of in vivo efficacy of CCL20/CCR6 modulators in a chronic model of IBD.


Assuntos
Colite , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Inflamação/patologia , Intestinos/patologia , Camundongos Endogâmicos C57BL , Receptores CCR6
3.
Eur J Med Chem ; 243: 114703, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36067700

RESUMO

The CCL20/CCR6 axis is implicated in the migration of CCR6+ immune cells towards CCL20, its sole ligand, whose expression is increased during inflammatory processes and is known to play a pivotal role in triggering different autoimmune-mediated inflammatory diseases. Herein, we report a drug discovery effort focused on the development of a new pharmacological approach for the treatment of inflammatory bowel diseases (IBDs) based on small-molecule CCR6 antagonists. The most promising compound 1b was identified by combining in silico studies, sustainable chemistry and in vitro functional/targeted assays, and its efficacy was finally validated in a classic murine model of colitis (TNBS-induced) and in a model of peritonitis (zymosan-induced). These data provide the proof of principle that a pharmacological modulation of the CCL20/CCR6 axis may indeed represent the first step for the development of an orally bioavailable drug candidate for the treatment of IBD and, potentially, other diseases regulated by the CCL20/CCR6 axis.


Assuntos
Doenças Autoimunes , Doenças Inflamatórias Intestinais , Camundongos , Humanos , Animais , Receptores CCR6/metabolismo , Quimiocina CCL20/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico
4.
ChemMedChem ; 16(23): 3548-3552, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34382337

RESUMO

Over half a century since the description of the first antiviral drug, "old" re-emerging viruses and "new" emerging viruses still represent a serious threat to global health. Their high mutation rate and rapid selection of resistance toward common antiviral drugs, together with the increasing number of co-infections, make the war against viruses quite challenging. Herein we report a host-targeted approach, based on the inhibition of the lipid kinase PI4KIIIß, as a promising strategy for inhibiting the replication of multiple viruses hijacking this protein. We show that bithiazole inhibitors of PI4KIIIß block the replication of human rhinoviruses (hRV), Zika virus (ZIKV) and SARS-CoV-2 at low micromolar and sub-micromolar concentrations. However, while the anti-hRV/ZIKV activity can be directly linked to PI4KIIIß inhibition, the role of PI4KIIIß in SARS-CoV-2 entry/replication is debated.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Antivirais/farmacologia , Inibidores Enzimáticos/química , Rhinovirus/fisiologia , SARS-CoV-2/fisiologia , Tiazóis/química , Replicação Viral/efeitos dos fármacos , Zika virus/fisiologia , 1-Fosfatidilinositol 4-Quinase/metabolismo , Antivirais/química , Antivirais/metabolismo , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , SARS-CoV-2/isolamento & purificação , Tiazóis/metabolismo , Zika virus/isolamento & purificação , Infecção por Zika virus/patologia
5.
Pharmaceuticals (Basel) ; 14(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074058

RESUMO

Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses induced by mesenteric ischemia/reperfusion, while beneficial effects were granted by EphB4, acting as EphB/ephrin-B antagonist, in a murine model of Crohn's disease (CD). Accordingly, we now aim to evaluate the effects of UniPR1331, a pan-Eph/ephrin antagonist, in TNBS-induced colitis and to ascertain whether UniPR1331 effects can be attributed to A- or B-type signaling interference. The potential anti-inflammatory action of UniPR1331 was compared to those of the recombinant proteins EphA2, a purported EphA/ephrin-A antagonist, and of ephrin-A1-Fc and EphA2-Fc, supposedly activating forward and reverse EphA/ephrin-A signaling, in murine TNBS-induced colitis and in stimulated cultured mononuclear splenocytes. UniPR1331 antagonized the inflammatory responses both in vivo, mimicking EphB4 protection, and in vitro; EphA/ephrin-A proteins were inactive or only weakly effective. Our findings represent a further proof-of-concept that blockade of EphB/ephrin-B signaling is a promising pharmacological strategy for CD management and highlight UniPR1331 as a novel drug candidate, seemingly working through the modulation of immune responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...